产品信息查询
产品 技术 新闻 资料
首页 > 产品中心 > 电源管理 > DC降压型芯片 > Buck降压型芯片 >CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
20

CXSD62102A降压在not中产生低压芯片组或RAM电源单相,恒定时间,同步PWM控制器,驱动N通道mosfet。CXSD62102A降压以在笔记本电脑中产生低压芯片组或RAM电源。

CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
产品手册
样品申请

样品申请

产品简介

目录ayE嘉泰姆

1.产品概述                       2.产品特点ayE嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 ayE嘉泰姆
5.产品封装图                     6.电路原理图                   ayE嘉泰姆
7.功能概述                        8.相关产品ayE嘉泰姆

一,产品概述(General Description)    ayE嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.ayE嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-ayE嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.ayE嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-ayE嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.ayE嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.ayE嘉泰姆
二.产品特点(Features)ayE嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3VayE嘉泰姆
- 0.6V Reference VoltageayE嘉泰姆
- ±0.6% Accuracy Over-TemperatureayE嘉泰姆
Operates from An Input Battery Voltage Range ofayE嘉泰姆
+1.8V to +28VayE嘉泰姆
REFIN Function for Over-clocking Purpose fromayE嘉泰姆
0.5V~2.5V rangeayE嘉泰姆
Power-On-Reset Monitoring on VCC pinayE嘉泰姆
Excellent line and load transient responsesayE嘉泰姆
PFM mode for increased light load efficiencyayE嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHzayE嘉泰姆
Built in 30A Output current driving capabilityayE嘉泰姆
Integrate MOSFET DriversayE嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETayE嘉泰姆
Power Good MonitoringayE嘉泰姆
70% Under-Voltage ProtectionayE嘉泰姆
125% Over-Voltage ProtectionayE嘉泰姆
TQFN3x3-16 PackageayE嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)ayE嘉泰姆
三,应用范围 (Applications)ayE嘉泰姆


NotebookayE嘉泰姆
Table PCayE嘉泰姆
Hand-Held PortableayE嘉泰姆
AIO PCayE嘉泰姆

四.下载产品资料PDF文档 ayE嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持ayE嘉泰姆

 QQ截图20160419174301.jpgayE嘉泰姆

五,产品封装图 (Package)ayE嘉泰姆


ayE嘉泰姆

六.电路原理图ayE嘉泰姆


blob.pngayE嘉泰姆

七,功能概述ayE嘉泰姆


Input Capacitor Selection (Cont.)ayE嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,ayE嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.ayE嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-ayE嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.ayE嘉泰姆
MOSFET SelectionayE嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldayE嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:ayE嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driverayE嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, theayE嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-ayE嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-ayE嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFETayE嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-ayE嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. TheayE嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-ayE嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to theayE嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.ayE嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-ayE嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:ayE嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyayE嘉泰姆
given by the following equations:ayE嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWayE嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)ayE嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequencyayE嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses whileayE嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFETayE嘉泰姆
Layout ConsiderationayE嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.ayE嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossayE嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionayE嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,ayE嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticayE嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andayE嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.ayE嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-ayE嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-ayE嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notayE嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,ayE嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.ayE嘉泰姆
Therefore, keep traces to these nodes as short asayE嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go toayE嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin toayE嘉泰姆
avoid parasitic capacitor effect and noise coupling.ayE嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,ayE嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)ayE嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-ayE嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of theayE嘉泰姆
output capacitors and low-side MOSFET.ayE嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pinayE嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).ayE嘉泰姆

Layout Consideration (Cont.)ayE嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.ayE嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging andayE嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be shortayE嘉泰姆
and wide.ayE嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.ayE嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce ofayE嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.ayE嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-ayE嘉泰姆

八,相关产品             更多同类产品...... ayE嘉泰姆


Switching Regulator >   Buck ControllerayE嘉泰姆

Part_No ayE嘉泰姆

Package ayE嘉泰姆

ArchiayE嘉泰姆

tectuayE嘉泰姆

PhaseayE嘉泰姆

No.ofayE嘉泰姆

PWMayE嘉泰姆

OutputayE嘉泰姆

Output ayE嘉泰姆

CurrentayE嘉泰姆

(A) ayE嘉泰姆

InputayE嘉泰姆

Voltage (V) ayE嘉泰姆

ReferenceayE嘉泰姆

VoltageayE嘉泰姆

(V) ayE嘉泰姆

Bias ayE嘉泰姆

VoltageayE嘉泰姆

(V) ayE嘉泰姆

QuiescentayE嘉泰姆

CurrentayE嘉泰姆

(uA) ayE嘉泰姆

minayE嘉泰姆

maxayE嘉泰姆

CXSD6273ayE嘉泰姆

SOP-14ayE嘉泰姆

QSOP-16ayE嘉泰姆

QFN4x4-16ayE嘉泰姆

VM    ayE嘉泰姆

1   ayE嘉泰姆

1     ayE嘉泰姆

30ayE嘉泰姆

2.9    ayE嘉泰姆

13.2ayE嘉泰姆

0.9ayE嘉泰姆

12     ayE嘉泰姆

8000ayE嘉泰姆

CXSD6274ayE嘉泰姆

SOP-8ayE嘉泰姆

VM   ayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

2.9  ayE嘉泰姆

13.2 ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6274CayE嘉泰姆

SOP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

2.9ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6275ayE嘉泰姆

QFN4x4-24ayE嘉泰姆

VMayE嘉泰姆

2ayE嘉泰姆

1ayE嘉泰姆

60ayE嘉泰姆

3.1ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6276ayE嘉泰姆

SOP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

2100ayE嘉泰姆

CXSD6276AayE嘉泰姆

SOP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

2100ayE嘉泰姆

CXSD6277/A/BayE嘉泰姆

SOP8|TSSOP8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

5ayE嘉泰姆

5ayE嘉泰姆

13.2ayE嘉泰姆

1.25|0.8ayE嘉泰姆

5~12ayE嘉泰姆

3000ayE嘉泰姆

CXSD6278ayE嘉泰姆

SOP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

10ayE嘉泰姆

3.3ayE嘉泰姆

5.5ayE嘉泰姆

0.8ayE嘉泰姆

5ayE嘉泰姆

2100ayE嘉泰姆

CXSD6279BayE嘉泰姆

SOP-14ayE嘉泰姆

VM   ayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

10ayE嘉泰姆

5ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

2000ayE嘉泰姆

CXSD6280ayE嘉泰姆

TSSOP-24ayE嘉泰姆

|QFN5x5-32ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

5ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

4000ayE嘉泰姆

CXSD6281NayE嘉泰姆

SOP14ayE嘉泰姆

QSOP16ayE嘉泰姆

QFN-16ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

2.9ayE嘉泰姆

13.2ayE嘉泰姆

0.9ayE嘉泰姆

12ayE嘉泰姆

4000ayE嘉泰姆

CXSD6282ayE嘉泰姆

SOP-14ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6282AayE嘉泰姆

SOP-14ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6283ayE嘉泰姆

SOP-14ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6284/AayE嘉泰姆

LQFP7x7 48ayE嘉泰姆

TQFN7x7-48ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

6ayE嘉泰姆

0.015ayE嘉泰姆

1.4ayE嘉泰姆

6.5ayE嘉泰姆

-ayE嘉泰姆

5ayE嘉泰姆

1800ayE嘉泰姆

CXSD6285ayE嘉泰姆

TSSOP-24PayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

2.97ayE嘉泰姆

5.5ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

5000ayE嘉泰姆

CXSD6286ayE嘉泰姆

SOP-14ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

10ayE嘉泰姆

5ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

3000ayE嘉泰姆

CXSD6287ayE嘉泰姆

SOP-8-P|DIP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

2.9ayE嘉泰姆

13.2ayE嘉泰姆

1.2ayE嘉泰姆

12ayE嘉泰姆

3000ayE嘉泰姆

CXSD6288ayE嘉泰姆

SSOP28ayE嘉泰姆

QFN4x4-24ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

5ayE嘉泰姆

24ayE嘉泰姆

0.9ayE嘉泰姆

5ayE嘉泰姆

1200ayE嘉泰姆

CXSD6289ayE嘉泰姆

SOP-20ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

2.2ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

4000ayE嘉泰姆

CXSD6290ayE嘉泰姆

SOP8|DFN3x3-10ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

-ayE嘉泰姆

-ayE嘉泰姆

-ayE嘉泰姆

-ayE嘉泰姆

5~12ayE嘉泰姆

550ayE嘉泰姆

CXSD6291HCayE嘉泰姆

DIP8|SOP-8ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

1.2ayE嘉泰姆

9ayE嘉泰姆

24ayE嘉泰姆

5ayE嘉泰姆

9 ~ 24ayE嘉泰姆

CXSD6292ayE嘉泰姆

SSOP16ayE嘉泰姆

QFN4x4-16ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

3ayE嘉泰姆

25ayE嘉泰姆

0.6ayE嘉泰姆

5ayE嘉泰姆

1700ayE嘉泰姆

CXSD6293ayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

3ayE嘉泰姆

25ayE嘉泰姆

0.5ayE嘉泰姆

5ayE嘉泰姆

350ayE嘉泰姆

CXSD6294ayE嘉泰姆

QFN4x4-24ayE嘉泰姆

CMayE嘉泰姆

2ayE嘉泰姆

1ayE嘉泰姆

40ayE嘉泰姆

4.5ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

4000ayE嘉泰姆

CXSD6295ayE嘉泰姆

SOP8PayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

3ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

2500ayE嘉泰姆

CXSD6296A|B|C|DayE嘉泰姆

SOP8PayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

3ayE嘉泰姆

13.2ayE嘉泰姆

0.6|0.8ayE嘉泰姆

5~12ayE嘉泰姆

1200ayE嘉泰姆

CXSD6297ayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

4ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

2000ayE嘉泰姆

CXSD6298ayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

4.5ayE嘉泰姆

25ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

80ayE嘉泰姆

CXSD6299|AayE嘉泰姆

SOP-8PayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

4.5ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

16000ayE嘉泰姆

CXSD62100ayE嘉泰姆

TQFN3x3-10ayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

4.5ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

2500ayE嘉泰姆

CXSD62101|LayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

3ayE嘉泰姆

25ayE嘉泰姆

0.8ayE嘉泰姆

5~12ayE嘉泰姆

2000ayE嘉泰姆

CXSD62102ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.6ayE嘉泰姆

5ayE嘉泰姆

600ayE嘉泰姆

CXSD62102AayE嘉泰姆

TQFN 3x3 16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

30ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.6ayE嘉泰姆

5ayE嘉泰姆

600ayE嘉泰姆

CXSD62103ayE嘉泰姆

QFN4x4-24ayE嘉泰姆

VMayE嘉泰姆

2ayE嘉泰姆

1ayE嘉泰姆

50ayE嘉泰姆

4.5ayE嘉泰姆

13.2ayE嘉泰姆

0.6ayE嘉泰姆

5~12ayE嘉泰姆

5000ayE嘉泰姆

CXSD62104ayE嘉泰姆

TQFN4x4-24ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

6ayE嘉泰姆

25ayE嘉泰姆

2ayE嘉泰姆

NayE嘉泰姆

550ayE嘉泰姆

CXSD62105ayE嘉泰姆

TQFN4x4-24ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

6ayE嘉泰姆

25ayE嘉泰姆

2ayE嘉泰姆

NayE嘉泰姆

550ayE嘉泰姆

CXSD62106|AayE嘉泰姆

TQFN4x4-4ayE嘉泰姆

TQFN3x3-20ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

800ayE嘉泰姆

CXSD62107ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

400ayE嘉泰姆

CXSD62108ayE嘉泰姆

QFN3.5x3.5-14ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

400ayE嘉泰姆

CXSD62109ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

400ayE嘉泰姆

CXSD62110ayE嘉泰姆

QFN3x3-20ayE嘉泰姆

TQFN3x3-16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

1.8|1.5|0.5ayE嘉泰姆

5ayE嘉泰姆

740ayE嘉泰姆

CXSD62111ayE嘉泰姆

TQFN4x4-24ayE嘉泰姆

|QFN3x3-20ayE嘉泰姆

CMayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

5ayE嘉泰姆

28ayE嘉泰姆

0.5ayE嘉泰姆

NayE嘉泰姆

3000ayE嘉泰姆

CXSD62112ayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.5ayE嘉泰姆

5ayE嘉泰姆

250ayE嘉泰姆

CXSD62113|CayE嘉泰姆

TQFN3x3-20ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

6ayE嘉泰姆

25ayE嘉泰姆

2ayE嘉泰姆

NayE嘉泰姆

550ayE嘉泰姆

CXSD62113EayE嘉泰姆

TQFN 3x3 20ayE嘉泰姆

COTayE嘉泰姆

2ayE嘉泰姆

2ayE嘉泰姆

11ayE嘉泰姆

6ayE嘉泰姆

25ayE嘉泰姆

2ayE嘉泰姆

NayE嘉泰姆

550ayE嘉泰姆

CXSD62114ayE嘉泰姆

TQFN3x3-20ayE嘉泰姆

COTayE嘉泰姆

2ayE嘉泰姆

2ayE嘉泰姆

11ayE嘉泰姆

5.5ayE嘉泰姆

25ayE嘉泰姆

2ayE嘉泰姆

NayE嘉泰姆

280ayE嘉泰姆

CXSD62115ayE嘉泰姆

QFN4x4-24ayE嘉泰姆

VMayE嘉泰姆

2ayE嘉泰姆

1ayE嘉泰姆

60ayE嘉泰姆

3.1ayE嘉泰姆

13.2ayE嘉泰姆

0.85ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD62116A|B|CayE嘉泰姆

SOP-8PayE嘉泰姆

VMayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

20ayE嘉泰姆

2.9ayE嘉泰姆

13.2ayE嘉泰姆

0.8ayE嘉泰姆

12ayE嘉泰姆

16000ayE嘉泰姆

CXSD62117ayE嘉泰姆

SOP-20ayE嘉泰姆

VMayE嘉泰姆

2ayE嘉泰姆

2ayE嘉泰姆

30ayE嘉泰姆

10ayE嘉泰姆

13.2ayE嘉泰姆

1ayE嘉泰姆

12ayE嘉泰姆

5000ayE嘉泰姆

CXSD62118ayE嘉泰姆

TDFN3x3-10ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

1ayE嘉泰姆

25ayE嘉泰姆

1.8ayE嘉泰姆

28ayE嘉泰姆

0.7ayE嘉泰姆

5ayE嘉泰姆

250ayE嘉泰姆

CXSD62119ayE嘉泰姆

TQFN3x3-20ayE嘉泰姆

COTayE嘉泰姆

2ayE嘉泰姆

1ayE嘉泰姆

40ayE嘉泰姆

1.8ayE嘉泰姆

25ayE嘉泰姆

REFIN SettingayE嘉泰姆

5ayE嘉泰姆

700ayE嘉泰姆

CXSD62120ayE嘉泰姆

QFN 3x3 20ayE嘉泰姆

TQFN 3x3 16ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

1.8|1.5 1.35|1.2 0.5ayE嘉泰姆

5ayE嘉泰姆

800ayE嘉泰姆

CXSD62121AayE嘉泰姆

TQFN3x3 20ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

220ayE嘉泰姆

CXSD62121BayE嘉泰姆

TQFN3x3 20ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

15ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

220ayE嘉泰姆

CXSD62121ayE嘉泰姆

TQFN3x3-20ayE嘉泰姆

COTayE嘉泰姆

1ayE嘉泰姆

2ayE嘉泰姆

20ayE嘉泰姆

3ayE嘉泰姆

28ayE嘉泰姆

0.75ayE嘉泰姆

5ayE嘉泰姆

180ayE嘉泰姆

发表评论
    共有条评论
    用户名: 密码:
    验证码: 匿名发表

热门信息
  • 最新信息
    推荐信息
    相关文章
    无相关信息
    推荐资讯
    智能电表驱动技术全景解析:从计量芯片到通信模块的完整指南
    智能电表驱动技术全景
    电子秤显示模块核心技术解析:从LCD驱动到智能接口的全方案指南
    电子秤显示模块核心技
    显示驱动电路深度解析:从基础原理到先进设计的完整指南  SEO关键词:
    显示驱动电路深度解析
    智能家电控制系统全面解析:从技术原理到未来趋势的深度指南
    智能家电控制系统全面
    串行通信接口终极指南:从基础原理到高速协议的全景解析
    串行通信接口终极指南
    家电显示控制系统全景解读:从UI设计到智能交互的技术演进
    家电显示控制系统全景
    辉度调节技术全面解析:从PWM调光到智能亮度控制的全景指南
    辉度调节技术全面解析
    串行接口终极指南:从UART到PCIe,详解串行通信原理与应用
    串行接口终极指南:从UA
    显示控制系统深度解析:从驱动原理到多屏交互的全景指南
    显示控制系统深度解析
    段码LED显示技术详解:原理、应用与选型指南
    段码LED显示技术详解:
    键盘扫描揭秘:从原理到应用,全面解析键盘如何识键如神
    键盘扫描揭秘:从原理到
    恒流驱动:终极指南 - 原理、优势与应用场景
    恒流驱动:终极指南 -