产品信息查询
产品 技术 新闻 资料
首页 > 产品中心 > 电源管理 > DC降压型芯片 > Buck降压型芯片 >CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
15

CXSD62102A降压在not中产生低压芯片组或RAM电源单相,恒定时间,同步PWM控制器,驱动N通道mosfet。CXSD62102A降压以在笔记本电脑中产生低压芯片组或RAM电源。

CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
产品手册
样品申请

样品申请

产品简介

目录8ME嘉泰姆

1.产品概述                       2.产品特点8ME嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 8ME嘉泰姆
5.产品封装图                     6.电路原理图                   8ME嘉泰姆
7.功能概述                        8.相关产品8ME嘉泰姆

一,产品概述(General Description)    8ME嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.8ME嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-8ME嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.8ME嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-8ME嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.8ME嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.8ME嘉泰姆
二.产品特点(Features)8ME嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3V8ME嘉泰姆
- 0.6V Reference Voltage8ME嘉泰姆
- ±0.6% Accuracy Over-Temperature8ME嘉泰姆
Operates from An Input Battery Voltage Range of8ME嘉泰姆
+1.8V to +28V8ME嘉泰姆
REFIN Function for Over-clocking Purpose from8ME嘉泰姆
0.5V~2.5V range8ME嘉泰姆
Power-On-Reset Monitoring on VCC pin8ME嘉泰姆
Excellent line and load transient responses8ME嘉泰姆
PFM mode for increased light load efficiency8ME嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHz8ME嘉泰姆
Built in 30A Output current driving capability8ME嘉泰姆
Integrate MOSFET Drivers8ME嘉泰姆
Integrated Bootstrap Forward P-CH MOSFET8ME嘉泰姆
Power Good Monitoring8ME嘉泰姆
70% Under-Voltage Protection8ME嘉泰姆
125% Over-Voltage Protection8ME嘉泰姆
TQFN3x3-16 Package8ME嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)8ME嘉泰姆
三,应用范围 (Applications)8ME嘉泰姆


Notebook8ME嘉泰姆
Table PC8ME嘉泰姆
Hand-Held Portable8ME嘉泰姆
AIO PC8ME嘉泰姆

四.下载产品资料PDF文档 8ME嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持8ME嘉泰姆

 QQ截图20160419174301.jpg8ME嘉泰姆

五,产品封装图 (Package)8ME嘉泰姆


8ME嘉泰姆

六.电路原理图8ME嘉泰姆


blob.png8ME嘉泰姆

七,功能概述8ME嘉泰姆


Input Capacitor Selection (Cont.)8ME嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,8ME嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.8ME嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-8ME嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.8ME嘉泰姆
MOSFET Selection8ME嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs should8ME嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:8ME嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driver8ME嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, the8ME嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-8ME嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-8ME嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFET8ME嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-8ME嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. The8ME嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-8ME嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to the8ME嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.8ME嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-8ME嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:8ME嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximately8ME嘉泰姆
given by the following equations:8ME嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSW8ME嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)8ME嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequency8ME嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses while8ME嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET8ME嘉泰姆
Layout Consideration8ME嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.8ME嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike across8ME嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transition8ME嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,8ME嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasitic8ME嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short and8ME嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.8ME嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-8ME嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-8ME嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are not8ME嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,8ME嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.8ME嘉泰姆
Therefore, keep traces to these nodes as short as8ME嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go to8ME嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin to8ME嘉泰姆
avoid parasitic capacitor effect and noise coupling.8ME嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,8ME嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)8ME嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-8ME嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of the8ME嘉泰姆
output capacitors and low-side MOSFET.8ME嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pin8ME嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).8ME嘉泰姆

Layout Consideration (Cont.)8ME嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.8ME嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging and8ME嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be short8ME嘉泰姆
and wide.8ME嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.8ME嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce of8ME嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.8ME嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-8ME嘉泰姆

  • CXSD62102ACXSD62102A8ME嘉泰姆

八,相关产品             更多同类产品...... 8ME嘉泰姆


Switching Regulator >   Buck Controller8ME嘉泰姆

Part_No 8ME嘉泰姆

Package 8ME嘉泰姆

Archi8ME嘉泰姆

tectu8ME嘉泰姆

Phase8ME嘉泰姆

No.of8ME嘉泰姆

PWM8ME嘉泰姆

Output8ME嘉泰姆

Output 8ME嘉泰姆

Current8ME嘉泰姆

(A) 8ME嘉泰姆

Input8ME嘉泰姆

Voltage (V) 8ME嘉泰姆

Reference8ME嘉泰姆

Voltage8ME嘉泰姆

(V) 8ME嘉泰姆

Bias 8ME嘉泰姆

Voltage8ME嘉泰姆

(V) 8ME嘉泰姆

Quiescent8ME嘉泰姆

Current8ME嘉泰姆

(uA) 8ME嘉泰姆

min8ME嘉泰姆

max8ME嘉泰姆

CXSD62738ME嘉泰姆

SOP-148ME嘉泰姆

QSOP-168ME嘉泰姆

QFN4x4-168ME嘉泰姆

VM    8ME嘉泰姆

1   8ME嘉泰姆

1     8ME嘉泰姆

308ME嘉泰姆

2.9    8ME嘉泰姆

13.28ME嘉泰姆

0.98ME嘉泰姆

12     8ME嘉泰姆

80008ME嘉泰姆

CXSD62748ME嘉泰姆

SOP-88ME嘉泰姆

VM   8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

2.9  8ME嘉泰姆

13.2 8ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD6274C8ME嘉泰姆

SOP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

2.98ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD62758ME嘉泰姆

QFN4x4-248ME嘉泰姆

VM8ME嘉泰姆

28ME嘉泰姆

18ME嘉泰姆

608ME嘉泰姆

3.18ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD62768ME嘉泰姆

SOP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

21008ME嘉泰姆

CXSD6276A8ME嘉泰姆

SOP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

21008ME嘉泰姆

CXSD6277/A/B8ME嘉泰姆

SOP8|TSSOP88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

58ME嘉泰姆

58ME嘉泰姆

13.28ME嘉泰姆

1.25|0.88ME嘉泰姆

5~128ME嘉泰姆

30008ME嘉泰姆

CXSD62788ME嘉泰姆

SOP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

108ME嘉泰姆

3.38ME嘉泰姆

5.58ME嘉泰姆

0.88ME嘉泰姆

58ME嘉泰姆

21008ME嘉泰姆

CXSD6279B8ME嘉泰姆

SOP-148ME嘉泰姆

VM   8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

108ME嘉泰姆

58ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

20008ME嘉泰姆

CXSD62808ME嘉泰姆

TSSOP-248ME嘉泰姆

|QFN5x5-328ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

58ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

40008ME嘉泰姆

CXSD6281N8ME嘉泰姆

SOP148ME嘉泰姆

QSOP168ME嘉泰姆

QFN-168ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

2.98ME嘉泰姆

13.28ME嘉泰姆

0.98ME嘉泰姆

128ME嘉泰姆

40008ME嘉泰姆

CXSD62828ME嘉泰姆

SOP-148ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD6282A8ME嘉泰姆

SOP-148ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD62838ME嘉泰姆

SOP-148ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD6284/A8ME嘉泰姆

LQFP7x7 488ME嘉泰姆

TQFN7x7-488ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

68ME嘉泰姆

0.0158ME嘉泰姆

1.48ME嘉泰姆

6.58ME嘉泰姆

-8ME嘉泰姆

58ME嘉泰姆

18008ME嘉泰姆

CXSD62858ME嘉泰姆

TSSOP-24P8ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

2.978ME嘉泰姆

5.58ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

50008ME嘉泰姆

CXSD62868ME嘉泰姆

SOP-148ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

108ME嘉泰姆

58ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

30008ME嘉泰姆

CXSD62878ME嘉泰姆

SOP-8-P|DIP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

2.98ME嘉泰姆

13.28ME嘉泰姆

1.28ME嘉泰姆

128ME嘉泰姆

30008ME嘉泰姆

CXSD62888ME嘉泰姆

SSOP288ME嘉泰姆

QFN4x4-248ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

58ME嘉泰姆

248ME嘉泰姆

0.98ME嘉泰姆

58ME嘉泰姆

12008ME嘉泰姆

CXSD62898ME嘉泰姆

SOP-208ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

2.28ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

40008ME嘉泰姆

CXSD62908ME嘉泰姆

SOP8|DFN3x3-108ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

-8ME嘉泰姆

-8ME嘉泰姆

-8ME嘉泰姆

-8ME嘉泰姆

5~128ME嘉泰姆

5508ME嘉泰姆

CXSD6291HC8ME嘉泰姆

DIP8|SOP-88ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

1.28ME嘉泰姆

98ME嘉泰姆

248ME嘉泰姆

58ME嘉泰姆

9 ~ 248ME嘉泰姆

CXSD62928ME嘉泰姆

SSOP168ME嘉泰姆

QFN4x4-168ME嘉泰姆

TQFN3x3-168ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

38ME嘉泰姆

258ME嘉泰姆

0.68ME嘉泰姆

58ME嘉泰姆

17008ME嘉泰姆

CXSD62938ME嘉泰姆

TDFN3x3-108ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

38ME嘉泰姆

258ME嘉泰姆

0.58ME嘉泰姆

58ME嘉泰姆

3508ME嘉泰姆

CXSD62948ME嘉泰姆

QFN4x4-248ME嘉泰姆

CM8ME嘉泰姆

28ME嘉泰姆

18ME嘉泰姆

408ME嘉泰姆

4.58ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

40008ME嘉泰姆

CXSD62958ME嘉泰姆

SOP8P8ME嘉泰姆

TDFN3x3-108ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

38ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

25008ME嘉泰姆

CXSD6296A|B|C|D8ME嘉泰姆

SOP8P8ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

38ME嘉泰姆

13.28ME嘉泰姆

0.6|0.88ME嘉泰姆

5~128ME嘉泰姆

12008ME嘉泰姆

CXSD62978ME嘉泰姆

TDFN3x3-108ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

48ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

20008ME嘉泰姆

CXSD62988ME嘉泰姆

TDFN3x3-108ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

4.58ME嘉泰姆

258ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

808ME嘉泰姆

CXSD6299|A8ME嘉泰姆

SOP-8P8ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

4.58ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

160008ME嘉泰姆

CXSD621008ME嘉泰姆

TQFN3x3-108ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

4.58ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

25008ME嘉泰姆

CXSD62101|L8ME嘉泰姆

TDFN3x3-108ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

38ME嘉泰姆

258ME嘉泰姆

0.88ME嘉泰姆

5~128ME嘉泰姆

20008ME嘉泰姆

CXSD621028ME嘉泰姆

TQFN3x3-168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.68ME嘉泰姆

58ME嘉泰姆

6008ME嘉泰姆

CXSD62102A8ME嘉泰姆

TQFN 3x3 168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

308ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.68ME嘉泰姆

58ME嘉泰姆

6008ME嘉泰姆

CXSD621038ME嘉泰姆

QFN4x4-248ME嘉泰姆

VM8ME嘉泰姆

28ME嘉泰姆

18ME嘉泰姆

508ME嘉泰姆

4.58ME嘉泰姆

13.28ME嘉泰姆

0.68ME嘉泰姆

5~128ME嘉泰姆

50008ME嘉泰姆

CXSD621048ME嘉泰姆

TQFN4x4-248ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

68ME嘉泰姆

258ME嘉泰姆

28ME嘉泰姆

N8ME嘉泰姆

5508ME嘉泰姆

CXSD621058ME嘉泰姆

TQFN4x4-248ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

68ME嘉泰姆

258ME嘉泰姆

28ME嘉泰姆

N8ME嘉泰姆

5508ME嘉泰姆

CXSD62106|A8ME嘉泰姆

TQFN4x4-48ME嘉泰姆

TQFN3x3-208ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

8008ME嘉泰姆

CXSD621078ME嘉泰姆

TQFN3x3-168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

4008ME嘉泰姆

CXSD621088ME嘉泰姆

QFN3.5x3.5-148ME嘉泰姆

TQFN3x3-168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

4008ME嘉泰姆

CXSD621098ME嘉泰姆

TQFN3x3-168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

4008ME嘉泰姆

CXSD621108ME嘉泰姆

QFN3x3-208ME嘉泰姆

TQFN3x3-168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

1.8|1.5|0.58ME嘉泰姆

58ME嘉泰姆

7408ME嘉泰姆

CXSD621118ME嘉泰姆

TQFN4x4-248ME嘉泰姆

|QFN3x3-208ME嘉泰姆

CM8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

58ME嘉泰姆

288ME嘉泰姆

0.58ME嘉泰姆

N8ME嘉泰姆

30008ME嘉泰姆

CXSD621128ME嘉泰姆

TDFN3x3-108ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.58ME嘉泰姆

58ME嘉泰姆

2508ME嘉泰姆

CXSD62113|C8ME嘉泰姆

TQFN3x3-208ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

68ME嘉泰姆

258ME嘉泰姆

28ME嘉泰姆

N8ME嘉泰姆

5508ME嘉泰姆

CXSD62113E8ME嘉泰姆

TQFN 3x3 208ME嘉泰姆

COT8ME嘉泰姆

28ME嘉泰姆

28ME嘉泰姆

118ME嘉泰姆

68ME嘉泰姆

258ME嘉泰姆

28ME嘉泰姆

N8ME嘉泰姆

5508ME嘉泰姆

CXSD621148ME嘉泰姆

TQFN3x3-208ME嘉泰姆

COT8ME嘉泰姆

28ME嘉泰姆

28ME嘉泰姆

118ME嘉泰姆

5.58ME嘉泰姆

258ME嘉泰姆

28ME嘉泰姆

N8ME嘉泰姆

2808ME嘉泰姆

CXSD621158ME嘉泰姆

QFN4x4-248ME嘉泰姆

VM8ME嘉泰姆

28ME嘉泰姆

18ME嘉泰姆

608ME嘉泰姆

3.18ME嘉泰姆

13.28ME嘉泰姆

0.858ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD62116A|B|C8ME嘉泰姆

SOP-8P8ME嘉泰姆

VM8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

208ME嘉泰姆

2.98ME嘉泰姆

13.28ME嘉泰姆

0.88ME嘉泰姆

128ME嘉泰姆

160008ME嘉泰姆

CXSD621178ME嘉泰姆

SOP-208ME嘉泰姆

VM8ME嘉泰姆

28ME嘉泰姆

28ME嘉泰姆

308ME嘉泰姆

108ME嘉泰姆

13.28ME嘉泰姆

18ME嘉泰姆

128ME嘉泰姆

50008ME嘉泰姆

CXSD621188ME嘉泰姆

TDFN3x3-108ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

18ME嘉泰姆

258ME嘉泰姆

1.88ME嘉泰姆

288ME嘉泰姆

0.78ME嘉泰姆

58ME嘉泰姆

2508ME嘉泰姆

CXSD621198ME嘉泰姆

TQFN3x3-208ME嘉泰姆

COT8ME嘉泰姆

28ME嘉泰姆

18ME嘉泰姆

408ME嘉泰姆

1.88ME嘉泰姆

258ME嘉泰姆

REFIN Setting8ME嘉泰姆

58ME嘉泰姆

7008ME嘉泰姆

CXSD621208ME嘉泰姆

QFN 3x3 208ME嘉泰姆

TQFN 3x3 168ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

1.8|1.5 1.35|1.2 0.58ME嘉泰姆

58ME嘉泰姆

8008ME嘉泰姆

CXSD62121A8ME嘉泰姆

TQFN3x3 208ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

2208ME嘉泰姆

CXSD62121B8ME嘉泰姆

TQFN3x3 208ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

158ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

2208ME嘉泰姆

CXSD621218ME嘉泰姆

TQFN3x3-208ME嘉泰姆

COT8ME嘉泰姆

18ME嘉泰姆

28ME嘉泰姆

208ME嘉泰姆

38ME嘉泰姆

288ME嘉泰姆

0.758ME嘉泰姆

58ME嘉泰姆

1808ME嘉泰姆

发表评论
    共有条评论
    用户名: 密码:
    验证码: 匿名发表

热门信息
  • 最新信息
    推荐信息
    相关文章
    无相关信息
    推荐资讯
    CXRT2122微波感应解决方案
    CXRT2122微波感应解决
    电池管理系统(BMS)深度解析:工作原理、关键技术与应用电路设计
    电池管理系统(BMS)深
    移动储能电源深度解析:工作原理、技术特点与典型应用电路
    移动储能电源深度解析
    光伏逆变器深度解析:工作原理、类型特点与典型应用电路
    光伏逆变器深度解析:工
    LC谐振DAB拓扑深度解析:工作原理、技术特点与典型应用电路
    LC谐振DAB拓扑深度解
    工业级运放深度解析:工作原理、类型特点与典型应用电路
    工业级运放深度解析:工
    信号分配电路深度解析:工作原理、类型特点与典型应用电路
    信号分配电路深度解析
    电压比较器深度解析:工作原理、类型特点与典型应用电路
    电压比较器深度解析:工
    有源滤波器设计深度解析:原理、类型、参数计算与典型应用电路
    有源滤波器设计深度解
    单电源运算放大器深度解析:工作原理、典型应用与设计要点
    单电源运算放大器深度
    宽电压运算放大器深度解析:技术特点、典型应用与设计选型
    宽电压运算放大器深度
    四路运算放大器深度解析:技术特点、典型应用与设计选型
    四路运算放大器深度解