产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
发表时间:2020-04-24浏览次数:120
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
 

目录Imv嘉泰姆

1.产品概述                       2.产品特点Imv嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 Imv嘉泰姆
5.产品封装图                     6.电路原理图                   Imv嘉泰姆
7.功能概述                        8.相关产品Imv嘉泰姆

一,产品概述(General Description)   Imv嘉泰姆


  The CXSD62118 is a single-phase, constant-on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62118 steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.Imv嘉泰姆
  The CXSD62118 provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62118 provides very high efficiency over light to heavy loads with loading-Imv嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.Imv嘉泰姆
  The CXSD62118 is equipped with accurate positive current-limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62118 has a 1ms digital soft-start and built-in an integrated output discharge method for soft-stop. An internal integratedImv嘉泰姆
soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors with controlled reverse inductor current.Imv嘉泰姆
  The CXSD62118 is available in 10pin TDFN 3x3 package.Imv嘉泰姆
二.产品特点(Features)Imv嘉泰姆


Adjustable Output Voltage from +0.7V to +5.5VImv嘉泰姆
- 0.7V Reference VoltageImv嘉泰姆
- ±1% Accuracy Over-TemperatureImv嘉泰姆
Operates from an Input Battery Voltage Range ofImv嘉泰姆
+1.8V to +28VImv嘉泰姆
Power-On-Reset Monitoring on VCC PinImv嘉泰姆
Excellent Line and Load Transient ResponsesImv嘉泰姆
PFM Mode for Increased Light Load EfficiencyImv嘉泰姆
Selectable PWM Frequency from 4 Preset ValuesImv嘉泰姆
Integrated MOSFET DriversImv嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETImv嘉泰姆
Adjustable Integrated Soft-Start and Soft-StopImv嘉泰姆
Selectable Forced PWM or Automatic PFM/PWM ModeImv嘉泰姆
Power Good MonitoringImv嘉泰姆
70% Under-Voltage ProtectionImv嘉泰姆
125% Over-Voltage ProtectionImv嘉泰姆
Adjustable Current-Limit ProtectionImv嘉泰姆
- Using Sense Low-Side MOSFET’s RDS(ON)Imv嘉泰姆
Over-Temperature ProtectionImv嘉泰姆
TDFN-10 3x3 PackageImv嘉泰姆
Lead Free and Green Devices AvailableImv嘉泰姆
三,应用范围 (Applications)Imv嘉泰姆


NotebookImv嘉泰姆
Table PCImv嘉泰姆
Hand-Held PortableImv嘉泰姆
AIO PCImv嘉泰姆
四.下载产品资料PDF文档 Imv嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持Imv嘉泰姆

 QQ截图20160419174301.jpgImv嘉泰姆

五,产品封装图 (Package)Imv嘉泰姆


blob.pngImv嘉泰姆

六.电路原理图Imv嘉泰姆


blob.pngImv嘉泰姆

七,功能概述Imv嘉泰姆


Input Capacitor Selection (Cont.)Imv嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximatelyImv嘉泰姆

 IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great Imv嘉泰姆

amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. TheImv嘉泰姆

 capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side Imv嘉泰姆

MOSFET with very low-impeadance PCB layoutImv嘉泰姆
MOSFET SelectionImv嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETsImv嘉泰姆

 should be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:Imv嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFETImv嘉泰姆

 driver will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET,Imv嘉泰姆

 the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the Imv嘉泰姆

miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchingImv嘉泰姆

 loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the Imv嘉泰姆

low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the Imv嘉泰姆

secondary consideration. The high-side MOSFET does not have this zero voltage switch- ing condition;Imv嘉泰姆

 in addition, because  it conducts for less time compared to the low-side MOSFET, the switching Imv嘉泰姆

loss tends to be dominant. Priority  should be given to the MOSFETs with less gate charge, so Imv嘉泰姆

that both the gate driver loss and switching loss  will be minimized.Imv嘉泰姆

The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversingImv嘉泰姆

 transfer capaci-tance (CRSS) and maximum output current requirement. The losses in the Imv嘉泰姆

MOSFETs have two components:conduction loss and transition loss. For the high-side and Imv嘉泰姆

low-side MOSFETs, the losses are approximately given by the following equations:Imv嘉泰姆

Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWImv嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)Imv嘉泰姆
Where I is the load current OUTImv嘉泰姆
TC is the temperature dependency of RDS(ON)Imv嘉泰姆
FSW is the switching frequencyImv嘉泰姆
tSW is the switching intervalImv嘉泰姆
D is the duty cycleImv嘉泰姆
Note that both MOSFETs have conduction losses while the high-side MOSFET includes an additional Imv嘉泰姆

transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. Imv嘉泰姆

The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted Imv嘉泰姆

from the “RDS(ON) vs. Temperature” curve of the power MOSFET.Imv嘉泰姆
Layout ConsiderationImv嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation Imv嘉泰姆

of the regulator.With power devices switching at higher frequency, the resulting current transient will Imv嘉泰姆

cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example,Imv嘉泰姆

 consider the turn-off transition of the PWM MOSFET. Before turn-off condition, the MOSFET is carryingImv嘉泰姆

 the full load current. During turn-off,current stops flowing in the MOSFET and is freewheeling by the Imv嘉泰姆

low side MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage Imv嘉泰姆

spike during the switching interval. In general, using short and wide printed circuit traces shouldImv嘉泰姆

 minimize interconnect-ing impedances and the magnitude of voltage spike.Imv嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground Imv嘉泰姆

plane construc-tion or single point grounding. The best tie-point between the signal ground and the Imv嘉泰姆

power ground is at the nega-tive side of the output capacitor on each channel, where there is less Imv嘉泰姆

noise. Noisy traces beneath the IC are not recommended. Below is a checklist for your layout:Imv嘉泰姆
· Keep the switching nodes (UGATE, LGATE, BOOT,and PHASE) away from sensitive small signal Imv嘉泰姆

nodes since these nodes are fast moving signals.Therefore, keep traces to these nodes as short asImv嘉泰姆
possible and there should be no other weak signal traces in parallel with theses traces on any layer.Imv嘉泰姆

Layout Consideration (Cont.)Imv嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak Imv嘉泰姆

charging and discharging current. The traces from the gate drivers to the MOSFETs (UGATE and Imv嘉泰姆

LGATE) should be short and wide.Imv嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as Imv嘉泰姆

possible.Minimizing the impedance with wide layout plane be-tween the two pads reduces the Imv嘉泰姆

voltage bounce of the node. In addition, the large layout plane between the drain of the Imv嘉泰姆

MOSFETs (VIN and PHASE nodes) can get better heat sinking.Imv嘉泰姆

The GND is the current sensing circuit reference ground and also the power ground of the Imv嘉泰姆

LGATE low-side MOSFET. On the other hand, the GND trace should be a separate trace andImv嘉泰姆

 independently go to the source of the low-side MOSFET. Besides, the cur-rent sense resistor Imv嘉泰姆

should be close to OCSET pin to avoid parasitic capacitor effect and noise coupling.Imv嘉泰姆

· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. Imv嘉泰姆

(For example,place the decoupling ceramic capacitor close to the drain of the high-side MOSFETImv嘉泰姆

 as close as possible.)Imv嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the outputImv嘉泰姆

 bulk capaci-tors should be close to the loads. The input capaci-tor’s ground should be close to theImv嘉泰姆

 grounds of the output capacitors and low-side MOSFET.Imv嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, Imv嘉泰姆

FB pin traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).Imv嘉泰姆

 八,相关产品                  更多同类产品...... Imv嘉泰姆


Switching Regulator >   Buck ControllerImv嘉泰姆

Part_No Imv嘉泰姆

Package Imv嘉泰姆

ArchiImv嘉泰姆

tectuImv嘉泰姆

PhaseImv嘉泰姆

No.ofImv嘉泰姆

PWMImv嘉泰姆

OutputImv嘉泰姆

Output Imv嘉泰姆

CurrentImv嘉泰姆

(A) Imv嘉泰姆

InputImv嘉泰姆

Voltage (V) Imv嘉泰姆

ReferenceImv嘉泰姆

VoltageImv嘉泰姆

(V) Imv嘉泰姆

Bias Imv嘉泰姆

VoltageImv嘉泰姆

(V) Imv嘉泰姆

QuiescentImv嘉泰姆

CurrentImv嘉泰姆

(uA) Imv嘉泰姆

minImv嘉泰姆

maxImv嘉泰姆

CXSD6273Imv嘉泰姆

SOP-14Imv嘉泰姆

QSOP-16Imv嘉泰姆

QFN4x4-16Imv嘉泰姆

VM    Imv嘉泰姆

1   Imv嘉泰姆

1     Imv嘉泰姆

30Imv嘉泰姆

2.9    Imv嘉泰姆

13.2Imv嘉泰姆

0.9Imv嘉泰姆

12     Imv嘉泰姆

8000Imv嘉泰姆

CXSD6274Imv嘉泰姆

SOP-8Imv嘉泰姆

VM   Imv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

20Imv嘉泰姆

2.9  Imv嘉泰姆

13.2 Imv嘉泰姆

0.8Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6274CImv嘉泰姆

SOP-8Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

20Imv嘉泰姆

2.9Imv嘉泰姆

13.2Imv嘉泰姆

0.8Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6275Imv嘉泰姆

QFN4x4-24Imv嘉泰姆

VMImv嘉泰姆

2Imv嘉泰姆

1Imv嘉泰姆

60Imv嘉泰姆

3.1Imv嘉泰姆

13.2Imv嘉泰姆

0.6Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6276Imv嘉泰姆

SOP-8Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

20Imv嘉泰姆

2.2Imv嘉泰姆

13.2Imv嘉泰姆

0.8Imv嘉泰姆

5~12Imv嘉泰姆

2100Imv嘉泰姆

CXSD6276AImv嘉泰姆

SOP-8Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

20Imv嘉泰姆

2.2Imv嘉泰姆

13.2Imv嘉泰姆

0.8Imv嘉泰姆

5~12Imv嘉泰姆

2100Imv嘉泰姆

CXSD6277/A/BImv嘉泰姆

SOP8|TSSOP8Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

5Imv嘉泰姆

5Imv嘉泰姆

13.2Imv嘉泰姆

1.25|0.8Imv嘉泰姆

5~12Imv嘉泰姆

3000Imv嘉泰姆

CXSD6278Imv嘉泰姆

SOP-8Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

10Imv嘉泰姆

3.3Imv嘉泰姆

5.5Imv嘉泰姆

0.8Imv嘉泰姆

5Imv嘉泰姆

2100Imv嘉泰姆

CXSD6279BImv嘉泰姆

SOP-14Imv嘉泰姆

VM   Imv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

10Imv嘉泰姆

5Imv嘉泰姆

13.2Imv嘉泰姆

0.8Imv嘉泰姆

12Imv嘉泰姆

2000Imv嘉泰姆

CXSD6280Imv嘉泰姆

TSSOP-24Imv嘉泰姆

|QFN5x5-32Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

2Imv嘉泰姆

20Imv嘉泰姆

5Imv嘉泰姆

13.2Imv嘉泰姆

0.6Imv嘉泰姆

5~12Imv嘉泰姆

4000Imv嘉泰姆

CXSD6281NImv嘉泰姆

SOP14Imv嘉泰姆

QSOP16Imv嘉泰姆

QFN-16Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

30Imv嘉泰姆

2.9Imv嘉泰姆

13.2Imv嘉泰姆

0.9Imv嘉泰姆

12Imv嘉泰姆

4000Imv嘉泰姆

CXSD6282Imv嘉泰姆

SOP-14Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

30Imv嘉泰姆

2.2Imv嘉泰姆

13.2Imv嘉泰姆

0.6Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6282AImv嘉泰姆

SOP-14Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

30Imv嘉泰姆

2.2Imv嘉泰姆

13.2Imv嘉泰姆

0.6Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6283Imv嘉泰姆

SOP-14Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

1Imv嘉泰姆

25Imv嘉泰姆

2.2Imv嘉泰姆

13.2Imv嘉泰姆

0.8Imv嘉泰姆

12Imv嘉泰姆

5000Imv嘉泰姆

CXSD6284/AImv嘉泰姆

LQFP7x7 48Imv嘉泰姆

TQFN7x7-48Imv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

6Imv嘉泰姆

0.015Imv嘉泰姆

1.4Imv嘉泰姆

6.5Imv嘉泰姆

-Imv嘉泰姆

5Imv嘉泰姆

1800Imv嘉泰姆

CXSD6285Imv嘉泰姆

TSSOP-24PImv嘉泰姆

VMImv嘉泰姆

1Imv嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息