产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
发表时间:2020-04-24浏览次数:65
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
 

目录hVP嘉泰姆

1.产品概述                       2.产品特点hVP嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 hVP嘉泰姆
5.产品封装图                     6.电路原理图                   hVP嘉泰姆
7.功能概述                        8.相关产品hVP嘉泰姆

一,产品概述(General Description)   hVP嘉泰姆


  The CXSD62118 is a single-phase, constant-on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62118 steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.hVP嘉泰姆
  The CXSD62118 provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62118 provides very high efficiency over light to heavy loads with loading-hVP嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.hVP嘉泰姆
  The CXSD62118 is equipped with accurate positive current-limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62118 has a 1ms digital soft-start and built-in an integrated output discharge method for soft-stop. An internal integratedhVP嘉泰姆
soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors with controlled reverse inductor current.hVP嘉泰姆
  The CXSD62118 is available in 10pin TDFN 3x3 package.hVP嘉泰姆
二.产品特点(Features)hVP嘉泰姆


Adjustable Output Voltage from +0.7V to +5.5VhVP嘉泰姆
- 0.7V Reference VoltagehVP嘉泰姆
- ±1% Accuracy Over-TemperaturehVP嘉泰姆
Operates from an Input Battery Voltage Range ofhVP嘉泰姆
+1.8V to +28VhVP嘉泰姆
Power-On-Reset Monitoring on VCC PinhVP嘉泰姆
Excellent Line and Load Transient ResponseshVP嘉泰姆
PFM Mode for Increased Light Load EfficiencyhVP嘉泰姆
Selectable PWM Frequency from 4 Preset ValueshVP嘉泰姆
Integrated MOSFET DrivershVP嘉泰姆
Integrated Bootstrap Forward P-CH MOSFEThVP嘉泰姆
Adjustable Integrated Soft-Start and Soft-StophVP嘉泰姆
Selectable Forced PWM or Automatic PFM/PWM ModehVP嘉泰姆
Power Good MonitoringhVP嘉泰姆
70% Under-Voltage ProtectionhVP嘉泰姆
125% Over-Voltage ProtectionhVP嘉泰姆
Adjustable Current-Limit ProtectionhVP嘉泰姆
- Using Sense Low-Side MOSFET’s RDS(ON)hVP嘉泰姆
Over-Temperature ProtectionhVP嘉泰姆
TDFN-10 3x3 PackagehVP嘉泰姆
Lead Free and Green Devices AvailablehVP嘉泰姆
三,应用范围 (Applications)hVP嘉泰姆


NotebookhVP嘉泰姆
Table PChVP嘉泰姆
Hand-Held PortablehVP嘉泰姆
AIO PChVP嘉泰姆
四.下载产品资料PDF文档 hVP嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持hVP嘉泰姆

 QQ截图20160419174301.jpghVP嘉泰姆

五,产品封装图 (Package)hVP嘉泰姆


blob.pnghVP嘉泰姆

六.电路原理图hVP嘉泰姆


blob.pnghVP嘉泰姆

七,功能概述hVP嘉泰姆


Input Capacitor Selection (Cont.)hVP嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximatelyhVP嘉泰姆

 IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great hVP嘉泰姆

amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. ThehVP嘉泰姆

 capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side hVP嘉泰姆

MOSFET with very low-impeadance PCB layouthVP嘉泰姆
MOSFET SelectionhVP嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETshVP嘉泰姆

 should be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:hVP嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFEThVP嘉泰姆

 driver will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET,hVP嘉泰姆

 the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the hVP嘉泰姆

miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchinghVP嘉泰姆

 loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the hVP嘉泰姆

low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the hVP嘉泰姆

secondary consideration. The high-side MOSFET does not have this zero voltage switch- ing condition;hVP嘉泰姆

 in addition, because  it conducts for less time compared to the low-side MOSFET, the switching hVP嘉泰姆

loss tends to be dominant. Priority  should be given to the MOSFETs with less gate charge, so hVP嘉泰姆

that both the gate driver loss and switching loss  will be minimized.hVP嘉泰姆

The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversinghVP嘉泰姆

 transfer capaci-tance (CRSS) and maximum output current requirement. The losses in the hVP嘉泰姆

MOSFETs have two components:conduction loss and transition loss. For the high-side and hVP嘉泰姆

low-side MOSFETs, the losses are approximately given by the following equations:hVP嘉泰姆

Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWhVP嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)hVP嘉泰姆
Where I is the load current OUThVP嘉泰姆
TC is the temperature dependency of RDS(ON)hVP嘉泰姆
FSW is the switching frequencyhVP嘉泰姆
tSW is the switching intervalhVP嘉泰姆
D is the duty cyclehVP嘉泰姆
Note that both MOSFETs have conduction losses while the high-side MOSFET includes an additional hVP嘉泰姆

transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. hVP嘉泰姆

The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted hVP嘉泰姆

from the “RDS(ON) vs. Temperature” curve of the power MOSFET.hVP嘉泰姆
Layout ConsiderationhVP嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation hVP嘉泰姆

of the regulator.With power devices switching at higher frequency, the resulting current transient will hVP嘉泰姆

cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example,hVP嘉泰姆

 consider the turn-off transition of the PWM MOSFET. Before turn-off condition, the MOSFET is carryinghVP嘉泰姆

 the full load current. During turn-off,current stops flowing in the MOSFET and is freewheeling by the hVP嘉泰姆

low side MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage hVP嘉泰姆

spike during the switching interval. In general, using short and wide printed circuit traces shouldhVP嘉泰姆

 minimize interconnect-ing impedances and the magnitude of voltage spike.hVP嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground hVP嘉泰姆

plane construc-tion or single point grounding. The best tie-point between the signal ground and the hVP嘉泰姆

power ground is at the nega-tive side of the output capacitor on each channel, where there is less hVP嘉泰姆

noise. Noisy traces beneath the IC are not recommended. Below is a checklist for your layout:hVP嘉泰姆
· Keep the switching nodes (UGATE, LGATE, BOOT,and PHASE) away from sensitive small signal hVP嘉泰姆

nodes since these nodes are fast moving signals.Therefore, keep traces to these nodes as short ashVP嘉泰姆
possible and there should be no other weak signal traces in parallel with theses traces on any layer.hVP嘉泰姆

Layout Consideration (Cont.)hVP嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak hVP嘉泰姆

charging and discharging current. The traces from the gate drivers to the MOSFETs (UGATE and hVP嘉泰姆

LGATE) should be short and wide.hVP嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as hVP嘉泰姆

possible.Minimizing the impedance with wide layout plane be-tween the two pads reduces the hVP嘉泰姆

voltage bounce of the node. In addition, the large layout plane between the drain of the hVP嘉泰姆

MOSFETs (VIN and PHASE nodes) can get better heat sinking.hVP嘉泰姆

The GND is the current sensing circuit reference ground and also the power ground of the hVP嘉泰姆

LGATE low-side MOSFET. On the other hand, the GND trace should be a separate trace andhVP嘉泰姆

 independently go to the source of the low-side MOSFET. Besides, the cur-rent sense resistor hVP嘉泰姆

should be close to OCSET pin to avoid parasitic capacitor effect and noise coupling.hVP嘉泰姆

· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. hVP嘉泰姆

(For example,place the decoupling ceramic capacitor close to the drain of the high-side MOSFEThVP嘉泰姆

 as close as possible.)hVP嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the outputhVP嘉泰姆

 bulk capaci-tors should be close to the loads. The input capaci-tor’s ground should be close to thehVP嘉泰姆

 grounds of the output capacitors and low-side MOSFET.hVP嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, hVP嘉泰姆

FB pin traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).hVP嘉泰姆

 八,相关产品                  更多同类产品...... hVP嘉泰姆


Switching Regulator >   Buck ControllerhVP嘉泰姆

Part_No hVP嘉泰姆

Package hVP嘉泰姆

ArchihVP嘉泰姆

tectuhVP嘉泰姆

PhasehVP嘉泰姆

No.ofhVP嘉泰姆

PWMhVP嘉泰姆

OutputhVP嘉泰姆

Output hVP嘉泰姆

CurrenthVP嘉泰姆

(A) hVP嘉泰姆

InputhVP嘉泰姆

Voltage (V) hVP嘉泰姆

ReferencehVP嘉泰姆

VoltagehVP嘉泰姆

(V) hVP嘉泰姆

Bias hVP嘉泰姆

VoltagehVP嘉泰姆

(V) hVP嘉泰姆

QuiescenthVP嘉泰姆

CurrenthVP嘉泰姆

(uA) hVP嘉泰姆

minhVP嘉泰姆

maxhVP嘉泰姆

CXSD6273hVP嘉泰姆

SOP-14hVP嘉泰姆

QSOP-16hVP嘉泰姆

QFN4x4-16hVP嘉泰姆

VM    hVP嘉泰姆

1   hVP嘉泰姆

1     hVP嘉泰姆

30hVP嘉泰姆

2.9    hVP嘉泰姆

13.2hVP嘉泰姆

0.9hVP嘉泰姆

12     hVP嘉泰姆

8000hVP嘉泰姆

CXSD6274hVP嘉泰姆

SOP-8hVP嘉泰姆

VM   hVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

20hVP嘉泰姆

2.9  hVP嘉泰姆

13.2 hVP嘉泰姆

0.8hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6274ChVP嘉泰姆

SOP-8hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

20hVP嘉泰姆

2.9hVP嘉泰姆

13.2hVP嘉泰姆

0.8hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6275hVP嘉泰姆

QFN4x4-24hVP嘉泰姆

VMhVP嘉泰姆

2hVP嘉泰姆

1hVP嘉泰姆

60hVP嘉泰姆

3.1hVP嘉泰姆

13.2hVP嘉泰姆

0.6hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6276hVP嘉泰姆

SOP-8hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

20hVP嘉泰姆

2.2hVP嘉泰姆

13.2hVP嘉泰姆

0.8hVP嘉泰姆

5~12hVP嘉泰姆

2100hVP嘉泰姆

CXSD6276AhVP嘉泰姆

SOP-8hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

20hVP嘉泰姆

2.2hVP嘉泰姆

13.2hVP嘉泰姆

0.8hVP嘉泰姆

5~12hVP嘉泰姆

2100hVP嘉泰姆

CXSD6277/A/BhVP嘉泰姆

SOP8|TSSOP8hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

5hVP嘉泰姆

5hVP嘉泰姆

13.2hVP嘉泰姆

1.25|0.8hVP嘉泰姆

5~12hVP嘉泰姆

3000hVP嘉泰姆

CXSD6278hVP嘉泰姆

SOP-8hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

10hVP嘉泰姆

3.3hVP嘉泰姆

5.5hVP嘉泰姆

0.8hVP嘉泰姆

5hVP嘉泰姆

2100hVP嘉泰姆

CXSD6279BhVP嘉泰姆

SOP-14hVP嘉泰姆

VM   hVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

10hVP嘉泰姆

5hVP嘉泰姆

13.2hVP嘉泰姆

0.8hVP嘉泰姆

12hVP嘉泰姆

2000hVP嘉泰姆

CXSD6280hVP嘉泰姆

TSSOP-24hVP嘉泰姆

|QFN5x5-32hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

2hVP嘉泰姆

20hVP嘉泰姆

5hVP嘉泰姆

13.2hVP嘉泰姆

0.6hVP嘉泰姆

5~12hVP嘉泰姆

4000hVP嘉泰姆

CXSD6281NhVP嘉泰姆

SOP14hVP嘉泰姆

QSOP16hVP嘉泰姆

QFN-16hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

30hVP嘉泰姆

2.9hVP嘉泰姆

13.2hVP嘉泰姆

0.9hVP嘉泰姆

12hVP嘉泰姆

4000hVP嘉泰姆

CXSD6282hVP嘉泰姆

SOP-14hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

30hVP嘉泰姆

2.2hVP嘉泰姆

13.2hVP嘉泰姆

0.6hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6282AhVP嘉泰姆

SOP-14hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

30hVP嘉泰姆

2.2hVP嘉泰姆

13.2hVP嘉泰姆

0.6hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6283hVP嘉泰姆

SOP-14hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

1hVP嘉泰姆

25hVP嘉泰姆

2.2hVP嘉泰姆

13.2hVP嘉泰姆

0.8hVP嘉泰姆

12hVP嘉泰姆

5000hVP嘉泰姆

CXSD6284/AhVP嘉泰姆

LQFP7x7 48hVP嘉泰姆

TQFN7x7-48hVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

6hVP嘉泰姆

0.015hVP嘉泰姆

1.4hVP嘉泰姆

6.5hVP嘉泰姆

-hVP嘉泰姆

5hVP嘉泰姆

1800hVP嘉泰姆

CXSD6285hVP嘉泰姆

TSSOP-24PhVP嘉泰姆

VMhVP嘉泰姆

1hVP嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息