产品信息查询
产品 新闻
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
发表时间:2020-04-24浏览次数:10
CXSD62118单相恒定时间同步的PWM控制器驱动N通道mosfet低压芯片组RAM电源
 

目录jQU嘉泰姆

1.产品概述                       2.产品特点jQU嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 jQU嘉泰姆
5.产品封装图                     6.电路原理图                   jQU嘉泰姆
7.功能概述                        8.相关产品jQU嘉泰姆

一,产品概述(General Description)   jQU嘉泰姆


  The CXSD62118 is a single-phase, constant-on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62118 steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.jQU嘉泰姆
  The CXSD62118 provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62118 provides very high efficiency over light to heavy loads with loading-jQU嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.jQU嘉泰姆
  The CXSD62118 is equipped with accurate positive current-limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62118 has a 1ms digital soft-start and built-in an integrated output discharge method for soft-stop. An internal integratedjQU嘉泰姆
soft-start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors with controlled reverse inductor current.jQU嘉泰姆
  The CXSD62118 is available in 10pin TDFN 3x3 package.jQU嘉泰姆
二.产品特点(Features)jQU嘉泰姆


Adjustable Output Voltage from +0.7V to +5.5VjQU嘉泰姆
- 0.7V Reference VoltagejQU嘉泰姆
- ±1% Accuracy Over-TemperaturejQU嘉泰姆
Operates from an Input Battery Voltage Range ofjQU嘉泰姆
+1.8V to +28VjQU嘉泰姆
Power-On-Reset Monitoring on VCC PinjQU嘉泰姆
Excellent Line and Load Transient ResponsesjQU嘉泰姆
PFM Mode for Increased Light Load EfficiencyjQU嘉泰姆
Selectable PWM Frequency from 4 Preset ValuesjQU嘉泰姆
Integrated MOSFET DriversjQU嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETjQU嘉泰姆
Adjustable Integrated Soft-Start and Soft-StopjQU嘉泰姆
Selectable Forced PWM or Automatic PFM/PWM ModejQU嘉泰姆
Power Good MonitoringjQU嘉泰姆
70% Under-Voltage ProtectionjQU嘉泰姆
125% Over-Voltage ProtectionjQU嘉泰姆
Adjustable Current-Limit ProtectionjQU嘉泰姆
- Using Sense Low-Side MOSFET’s RDS(ON)jQU嘉泰姆
Over-Temperature ProtectionjQU嘉泰姆
TDFN-10 3x3 PackagejQU嘉泰姆
Lead Free and Green Devices AvailablejQU嘉泰姆
三,应用范围 (Applications)jQU嘉泰姆


NotebookjQU嘉泰姆
Table PCjQU嘉泰姆
Hand-Held PortablejQU嘉泰姆
AIO PCjQU嘉泰姆
四.下载产品资料PDF文档 jQU嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持jQU嘉泰姆

 QQ截图20160419174301.jpgjQU嘉泰姆

五,产品封装图 (Package)jQU嘉泰姆


blob.pngjQU嘉泰姆

六.电路原理图jQU嘉泰姆


blob.pngjQU嘉泰姆

七,功能概述jQU嘉泰姆


Input Capacitor Selection (Cont.)jQU嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximatelyjQU嘉泰姆

 IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great jQU嘉泰姆

amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. ThejQU嘉泰姆

 capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side jQU嘉泰姆

MOSFET with very low-impeadance PCB layoutjQU嘉泰姆
MOSFET SelectionjQU嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETsjQU嘉泰姆

 should be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:jQU嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFETjQU嘉泰姆

 driver will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET,jQU嘉泰姆

 the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the jQU嘉泰姆

miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchingjQU嘉泰姆

 loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the jQU嘉泰姆

low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the jQU嘉泰姆

secondary consideration. The high-side MOSFET does not have this zero voltage switch- ing condition;jQU嘉泰姆

 in addition, because  it conducts for less time compared to the low-side MOSFET, the switching jQU嘉泰姆

loss tends to be dominant. Priority  should be given to the MOSFETs with less gate charge, so jQU嘉泰姆

that both the gate driver loss and switching loss  will be minimized.jQU嘉泰姆

The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversingjQU嘉泰姆

 transfer capaci-tance (CRSS) and maximum output current requirement. The losses in the jQU嘉泰姆

MOSFETs have two components:conduction loss and transition loss. For the high-side and jQU嘉泰姆

low-side MOSFETs, the losses are approximately given by the following equations:jQU嘉泰姆

Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWjQU嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)jQU嘉泰姆
Where I is the load current OUTjQU嘉泰姆
TC is the temperature dependency of RDS(ON)jQU嘉泰姆
FSW is the switching frequencyjQU嘉泰姆
tSW is the switching intervaljQU嘉泰姆
D is the duty cyclejQU嘉泰姆
Note that both MOSFETs have conduction losses while the high-side MOSFET includes an additional jQU嘉泰姆

transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. jQU嘉泰姆

The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted jQU嘉泰姆

from the “RDS(ON) vs. Temperature” curve of the power MOSFET.jQU嘉泰姆
Layout ConsiderationjQU嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation jQU嘉泰姆

of the regulator.With power devices switching at higher frequency, the resulting current transient will jQU嘉泰姆

cause voltage spike across the interconnecting impedance and parasitic circuit elements. As an example,jQU嘉泰姆

 consider the turn-off transition of the PWM MOSFET. Before turn-off condition, the MOSFET is carryingjQU嘉泰姆

 the full load current. During turn-off,current stops flowing in the MOSFET and is freewheeling by the jQU嘉泰姆

low side MOSFET and parasitic diode. Any parasitic inductance of the circuit generates a large voltage jQU嘉泰姆

spike during the switching interval. In general, using short and wide printed circuit traces shouldjQU嘉泰姆

 minimize interconnect-ing impedances and the magnitude of voltage spike.jQU嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground jQU嘉泰姆

plane construc-tion or single point grounding. The best tie-point between the signal ground and the jQU嘉泰姆

power ground is at the nega-tive side of the output capacitor on each channel, where there is less jQU嘉泰姆

noise. Noisy traces beneath the IC are not recommended. Below is a checklist for your layout:jQU嘉泰姆
· Keep the switching nodes (UGATE, LGATE, BOOT,and PHASE) away from sensitive small signal jQU嘉泰姆

nodes since these nodes are fast moving signals.Therefore, keep traces to these nodes as short asjQU嘉泰姆
possible and there should be no other weak signal traces in parallel with theses traces on any layer.jQU嘉泰姆

Layout Consideration (Cont.)jQU嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak jQU嘉泰姆

charging and discharging current. The traces from the gate drivers to the MOSFETs (UGATE and jQU嘉泰姆

LGATE) should be short and wide.jQU嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as jQU嘉泰姆

possible.Minimizing the impedance with wide layout plane be-tween the two pads reduces the jQU嘉泰姆

voltage bounce of the node. In addition, the large layout plane between the drain of the jQU嘉泰姆

MOSFETs (VIN and PHASE nodes) can get better heat sinking.jQU嘉泰姆

The GND is the current sensing circuit reference ground and also the power ground of the jQU嘉泰姆

LGATE low-side MOSFET. On the other hand, the GND trace should be a separate trace andjQU嘉泰姆

 independently go to the source of the low-side MOSFET. Besides, the cur-rent sense resistor jQU嘉泰姆

should be close to OCSET pin to avoid parasitic capacitor effect and noise coupling.jQU嘉泰姆

· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. jQU嘉泰姆

(For example,place the decoupling ceramic capacitor close to the drain of the high-side MOSFETjQU嘉泰姆

 as close as possible.)jQU嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the outputjQU嘉泰姆

 bulk capaci-tors should be close to the loads. The input capaci-tor’s ground should be close to thejQU嘉泰姆

 grounds of the output capacitors and low-side MOSFET.jQU嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, jQU嘉泰姆

FB pin traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).jQU嘉泰姆

 八,相关产品                  更多同类产品...... jQU嘉泰姆


Switching Regulator >   Buck ControllerjQU嘉泰姆

Part_No jQU嘉泰姆

Package jQU嘉泰姆

ArchijQU嘉泰姆

tectujQU嘉泰姆

PhasejQU嘉泰姆

No.ofjQU嘉泰姆

PWMjQU嘉泰姆

OutputjQU嘉泰姆

Output jQU嘉泰姆

CurrentjQU嘉泰姆

(A) jQU嘉泰姆

InputjQU嘉泰姆

Voltage (V) jQU嘉泰姆

ReferencejQU嘉泰姆

VoltagejQU嘉泰姆

(V) jQU嘉泰姆

Bias jQU嘉泰姆

VoltagejQU嘉泰姆

(V) jQU嘉泰姆

QuiescentjQU嘉泰姆

CurrentjQU嘉泰姆

(uA) jQU嘉泰姆

minjQU嘉泰姆

maxjQU嘉泰姆

CXSD6273jQU嘉泰姆

SOP-14jQU嘉泰姆

QSOP-16jQU嘉泰姆

QFN4x4-16jQU嘉泰姆

VM    jQU嘉泰姆

1   jQU嘉泰姆

1     jQU嘉泰姆

30jQU嘉泰姆

2.9    jQU嘉泰姆

13.2jQU嘉泰姆

0.9jQU嘉泰姆

12     jQU嘉泰姆

8000jQU嘉泰姆

CXSD6274jQU嘉泰姆

SOP-8jQU嘉泰姆

VM   jQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

20jQU嘉泰姆

2.9  jQU嘉泰姆

13.2 jQU嘉泰姆

0.8jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6274CjQU嘉泰姆

SOP-8jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

20jQU嘉泰姆

2.9jQU嘉泰姆

13.2jQU嘉泰姆

0.8jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6275jQU嘉泰姆

QFN4x4-24jQU嘉泰姆

VMjQU嘉泰姆

2jQU嘉泰姆

1jQU嘉泰姆

60jQU嘉泰姆

3.1jQU嘉泰姆

13.2jQU嘉泰姆

0.6jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6276jQU嘉泰姆

SOP-8jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

20jQU嘉泰姆

2.2jQU嘉泰姆

13.2jQU嘉泰姆

0.8jQU嘉泰姆

5~12jQU嘉泰姆

2100jQU嘉泰姆

CXSD6276AjQU嘉泰姆

SOP-8jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

20jQU嘉泰姆

2.2jQU嘉泰姆

13.2jQU嘉泰姆

0.8jQU嘉泰姆

5~12jQU嘉泰姆

2100jQU嘉泰姆

CXSD6277/A/BjQU嘉泰姆

SOP8|TSSOP8jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

5jQU嘉泰姆

5jQU嘉泰姆

13.2jQU嘉泰姆

1.25|0.8jQU嘉泰姆

5~12jQU嘉泰姆

3000jQU嘉泰姆

CXSD6278jQU嘉泰姆

SOP-8jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

10jQU嘉泰姆

3.3jQU嘉泰姆

5.5jQU嘉泰姆

0.8jQU嘉泰姆

5jQU嘉泰姆

2100jQU嘉泰姆

CXSD6279BjQU嘉泰姆

SOP-14jQU嘉泰姆

VM   jQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

10jQU嘉泰姆

5jQU嘉泰姆

13.2jQU嘉泰姆

0.8jQU嘉泰姆

12jQU嘉泰姆

2000jQU嘉泰姆

CXSD6280jQU嘉泰姆

TSSOP-24jQU嘉泰姆

|QFN5x5-32jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

2jQU嘉泰姆

20jQU嘉泰姆

5jQU嘉泰姆

13.2jQU嘉泰姆

0.6jQU嘉泰姆

5~12jQU嘉泰姆

4000jQU嘉泰姆

CXSD6281NjQU嘉泰姆

SOP14jQU嘉泰姆

QSOP16jQU嘉泰姆

QFN-16jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

30jQU嘉泰姆

2.9jQU嘉泰姆

13.2jQU嘉泰姆

0.9jQU嘉泰姆

12jQU嘉泰姆

4000jQU嘉泰姆

CXSD6282jQU嘉泰姆

SOP-14jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

30jQU嘉泰姆

2.2jQU嘉泰姆

13.2jQU嘉泰姆

0.6jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6282AjQU嘉泰姆

SOP-14jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

30jQU嘉泰姆

2.2jQU嘉泰姆

13.2jQU嘉泰姆

0.6jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6283jQU嘉泰姆

SOP-14jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

1jQU嘉泰姆

25jQU嘉泰姆

2.2jQU嘉泰姆

13.2jQU嘉泰姆

0.8jQU嘉泰姆

12jQU嘉泰姆

5000jQU嘉泰姆

CXSD6284/AjQU嘉泰姆

LQFP7x7 48jQU嘉泰姆

TQFN7x7-48jQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆

6jQU嘉泰姆

0.015jQU嘉泰姆

1.4jQU嘉泰姆

6.5jQU嘉泰姆

-jQU嘉泰姆

5jQU嘉泰姆

1800jQU嘉泰姆

CXSD6285jQU嘉泰姆

TSSOP-24PjQU嘉泰姆

VMjQU嘉泰姆

1jQU嘉泰姆