产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
发表时间:2020-04-22浏览次数:89
CXSD62102A单相定时同步的PWM控制器驱动N通道mosfet功率因数调制(PFM)或脉宽调制(PWM)模式下都能瞬态响应和准确的直流电压输出
 

目录yqI嘉泰姆

1.产品概述                       2.产品特点yqI嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 yqI嘉泰姆
5.产品封装图                     6.电路原理图                   yqI嘉泰姆
7.功能概述                        8.相关产品yqI嘉泰姆

一,产品概述(General Description)    yqI嘉泰姆


  The CXSD62102A is a single-phase, constant on-time,synchronous PWM controller, which drives N-channel MOSFETs. The CXSD62102A steps down high voltage to generate low-voltage chipset or RAM supplies in notebook computers.yqI嘉泰姆
  The CXSD62102A provides excellent transient response and accurate DC voltage output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), the CXSD62102A provides very high efficiency over light to heavy loads with loading-yqI嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at constant frequency for low-noise requirements.yqI嘉泰姆
  The CXSD62102A is equipped with accurate positive current limit, output under-voltage, and output over-voltage protections, perfect for NB applications. The Power-On-Reset function monitors the voltage on VCC to prevent wrong operation during power-on. The CXSD62102A has a 1ms digital soft start and built-in an integrated output discharge device for soft stop. An internal integrated soft-yqI嘉泰姆
start ramps up the output voltage with programmable slew rate to reduce the start-up current. A soft-stop function actively discharges the output capacitors.yqI嘉泰姆
  The CXSD62102A is available in 16pin TQFN3x3-16 package respectively.yqI嘉泰姆
二.产品特点(Features)yqI嘉泰姆


Adjustable Output Voltage from +0.6V to +3.3VyqI嘉泰姆
- 0.6V Reference VoltageyqI嘉泰姆
- ±0.6% Accuracy Over-TemperatureyqI嘉泰姆
Operates from An Input Battery Voltage Range ofyqI嘉泰姆
+1.8V to +28VyqI嘉泰姆
REFIN Function for Over-clocking Purpose fromyqI嘉泰姆
0.5V~2.5V rangeyqI嘉泰姆
Power-On-Reset Monitoring on VCC pinyqI嘉泰姆
Excellent line and load transient responsesyqI嘉泰姆
PFM mode for increased light load efficiencyyqI嘉泰姆
Programmable PWM Frequency from 100kHz to 500kHzyqI嘉泰姆
Built in 30A Output current driving capabilityyqI嘉泰姆
Integrate MOSFET DriversyqI嘉泰姆
Integrated Bootstrap Forward P-CH MOSFETyqI嘉泰姆
Power Good MonitoringyqI嘉泰姆
70% Under-Voltage ProtectionyqI嘉泰姆
125% Over-Voltage ProtectionyqI嘉泰姆
TQFN3x3-16 PackageyqI嘉泰姆
Lead Free and Green Devices Available (RoHS Compliant)yqI嘉泰姆
三,应用范围 (Applications)yqI嘉泰姆


NotebookyqI嘉泰姆
Table PCyqI嘉泰姆
Hand-Held PortableyqI嘉泰姆
AIO PCyqI嘉泰姆

四.下载产品资料PDF文档 yqI嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持yqI嘉泰姆

 QQ截图20160419174301.jpgyqI嘉泰姆

五,产品封装图 (Package)yqI嘉泰姆


yqI嘉泰姆

六.电路原理图yqI嘉泰姆


blob.pngyqI嘉泰姆

七,功能概述yqI嘉泰姆


Input Capacitor Selection (Cont.)yqI嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,yqI嘉泰姆
where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.yqI嘉泰姆
For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-yqI嘉泰姆
tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout.yqI嘉泰姆
MOSFET SelectionyqI嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shouldyqI嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:yqI嘉泰姆
For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driveryqI嘉泰姆
will not charge the miller capacitor of this MOSFET.In the turning off process of the low-side MOSFET, theyqI嘉泰姆
load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-yqI嘉泰姆
tor through the low-side MOSFET driver sinking current path. This results in much less switching loss of the low-yqI嘉泰姆
side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFETyqI嘉泰姆
will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-yqI嘉泰姆
verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. TheyqI嘉泰姆
high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-yqI嘉泰姆
pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to theyqI嘉泰姆
MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.yqI嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-yqI嘉泰姆
tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:yqI嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyyqI嘉泰姆
given by the following equations:yqI嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWyqI嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D)yqI嘉泰姆
Where TC is the temperature dependency of RDS(ON)FSW is the switching frequencyyqI嘉泰姆
tSW is the switching interval D is the duty cycle Note that both MOSFETs have conduction losses whileyqI嘉泰姆
the high-side MOSFET includes an additional transition loss. The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFETyqI嘉泰姆
Layout ConsiderationyqI嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.yqI嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossyqI嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionyqI嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,yqI嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticyqI嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short andyqI嘉泰姆
wide printed circuit traces should minimize interconnect- ing impedances and the magnitude of voltage spike.yqI嘉泰姆
Besides, signal and power grounds are to be kept sepa- rating and finally combined using ground plane construc-yqI嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-yqI嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notyqI嘉泰姆
recommended. Below is a checklist for your layout:· Keep the switching nodes (UGATE, LGATE, BOOT,yqI嘉泰姆
and PHASE) away from sensitive small signal nodes since these nodes are fast moving signals.yqI嘉泰姆
Therefore, keep traces to these nodes as short asyqI嘉泰姆
side MOSFET. On the other hand, the PGND trace should be a separate trace and independently go toyqI嘉泰姆
the source of the low-side MOSFET. Besides, the cur-rent sense resistor should be close to OCSET pin toyqI嘉泰姆
avoid parasitic capacitor effect and noise coupling.yqI嘉泰姆
· Decoupling capacitors, the resistor-divider, and boot capacitor should be close to their pins. (For example,yqI嘉泰姆
place the decoupling ceramic capacitor close to the drain of the high-side MOSFET as close as possible.)yqI嘉泰姆
· The input bulk capacitors should be close to the drain of the high-side MOSFET, and the output bulk capaci-yqI嘉泰姆
tors should be close to the loads. The input capaci-tor’s ground should be close to the grounds of theyqI嘉泰姆
output capacitors and low-side MOSFET.yqI嘉泰姆
· Locate the resistor-divider close to the FB pin to mini-mize the high impedance trace. In addition, FB pinyqI嘉泰姆
traces can’t be close to the switching signal traces (UGATE, LGATE, BOOT, and PHASE).yqI嘉泰姆

Layout Consideration (Cont.)yqI嘉泰姆

possible and there should be no other weak signal traces in parallel with theses traces on any layer.yqI嘉泰姆
· The signals going through theses traces have both high dv/dt and high di/dt with high peak charging andyqI嘉泰姆
discharging current. The traces from the gate drivers to the MOSFETs (UGATE and LGATE) should be shortyqI嘉泰姆
and wide.yqI嘉泰姆
· Place the source of the high-side MOSFET and the drain of the low-side MOSFET as close as possible.yqI嘉泰姆
Minimizing the impedance with wide layout plane be-tween the two pads reduces the voltage bounce ofyqI嘉泰姆
the drain of the MOSFETs (VIN and PHASE nodes) can get better heat sinking.yqI嘉泰姆

· The PGND is the current sensing circuit reference ground and also the power ground of the LGATE low-yqI嘉泰姆

  • CXSD62102ACXSD62102AyqI嘉泰姆

八,相关产品             更多同类产品...... yqI嘉泰姆


Switching Regulator >   Buck ControlleryqI嘉泰姆

Part_No yqI嘉泰姆

Package yqI嘉泰姆

ArchiyqI嘉泰姆

tectuyqI嘉泰姆

PhaseyqI嘉泰姆

No.ofyqI嘉泰姆

PWMyqI嘉泰姆

OutputyqI嘉泰姆

Output yqI嘉泰姆

CurrentyqI嘉泰姆

(A) yqI嘉泰姆

InputyqI嘉泰姆

Voltage (V) yqI嘉泰姆

ReferenceyqI嘉泰姆

VoltageyqI嘉泰姆

(V) yqI嘉泰姆

Bias yqI嘉泰姆

VoltageyqI嘉泰姆

(V) yqI嘉泰姆

QuiescentyqI嘉泰姆

CurrentyqI嘉泰姆

(uA) yqI嘉泰姆

minyqI嘉泰姆

maxyqI嘉泰姆

CXSD6273yqI嘉泰姆

SOP-14yqI嘉泰姆

QSOP-16yqI嘉泰姆

QFN4x4-16yqI嘉泰姆

VM    yqI嘉泰姆

1   yqI嘉泰姆

1     yqI嘉泰姆

30yqI嘉泰姆

2.9    yqI嘉泰姆

13.2yqI嘉泰姆

0.9yqI嘉泰姆

12     yqI嘉泰姆

8000yqI嘉泰姆

CXSD6274yqI嘉泰姆

SOP-8yqI嘉泰姆

VM   yqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

20yqI嘉泰姆

2.9  yqI嘉泰姆

13.2 yqI嘉泰姆

0.8yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6274CyqI嘉泰姆

SOP-8yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

20yqI嘉泰姆

2.9yqI嘉泰姆

13.2yqI嘉泰姆

0.8yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6275yqI嘉泰姆

QFN4x4-24yqI嘉泰姆

VMyqI嘉泰姆

2yqI嘉泰姆

1yqI嘉泰姆

60yqI嘉泰姆

3.1yqI嘉泰姆

13.2yqI嘉泰姆

0.6yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6276yqI嘉泰姆

SOP-8yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

20yqI嘉泰姆

2.2yqI嘉泰姆

13.2yqI嘉泰姆

0.8yqI嘉泰姆

5~12yqI嘉泰姆

2100yqI嘉泰姆

CXSD6276AyqI嘉泰姆

SOP-8yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

20yqI嘉泰姆

2.2yqI嘉泰姆

13.2yqI嘉泰姆

0.8yqI嘉泰姆

5~12yqI嘉泰姆

2100yqI嘉泰姆

CXSD6277/A/ByqI嘉泰姆

SOP8|TSSOP8yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

5yqI嘉泰姆

5yqI嘉泰姆

13.2yqI嘉泰姆

1.25|0.8yqI嘉泰姆

5~12yqI嘉泰姆

3000yqI嘉泰姆

CXSD6278yqI嘉泰姆

SOP-8yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

10yqI嘉泰姆

3.3yqI嘉泰姆

5.5yqI嘉泰姆

0.8yqI嘉泰姆

5yqI嘉泰姆

2100yqI嘉泰姆

CXSD6279ByqI嘉泰姆

SOP-14yqI嘉泰姆

VM   yqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

10yqI嘉泰姆

5yqI嘉泰姆

13.2yqI嘉泰姆

0.8yqI嘉泰姆

12yqI嘉泰姆

2000yqI嘉泰姆

CXSD6280yqI嘉泰姆

TSSOP-24yqI嘉泰姆

|QFN5x5-32yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

2yqI嘉泰姆

20yqI嘉泰姆

5yqI嘉泰姆

13.2yqI嘉泰姆

0.6yqI嘉泰姆

5~12yqI嘉泰姆

4000yqI嘉泰姆

CXSD6281NyqI嘉泰姆

SOP14yqI嘉泰姆

QSOP16yqI嘉泰姆

QFN-16yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

30yqI嘉泰姆

2.9yqI嘉泰姆

13.2yqI嘉泰姆

0.9yqI嘉泰姆

12yqI嘉泰姆

4000yqI嘉泰姆

CXSD6282yqI嘉泰姆

SOP-14yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

30yqI嘉泰姆

2.2yqI嘉泰姆

13.2yqI嘉泰姆

0.6yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6282AyqI嘉泰姆

SOP-14yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

30yqI嘉泰姆

2.2yqI嘉泰姆

13.2yqI嘉泰姆

0.6yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6283yqI嘉泰姆

SOP-14yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

1yqI嘉泰姆

25yqI嘉泰姆

2.2yqI嘉泰姆

13.2yqI嘉泰姆

0.8yqI嘉泰姆

12yqI嘉泰姆

5000yqI嘉泰姆

CXSD6284/AyqI嘉泰姆

LQFP7x7 48yqI嘉泰姆

TQFN7x7-48yqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

6yqI嘉泰姆

0.015yqI嘉泰姆

1.4yqI嘉泰姆

6.5yqI嘉泰姆

-yqI嘉泰姆

5yqI嘉泰姆

1800yqI嘉泰姆

CXSD6285yqI嘉泰姆

TSSOP-24PyqI嘉泰姆

VMyqI嘉泰姆

1yqI嘉泰姆

2yqI嘉泰姆

20yqI嘉泰姆

2.97yqI嘉泰姆

5.5yqI嘉泰姆

0.8yqI嘉泰姆

5~12yqI嘉泰姆

5000yqI嘉泰姆

 yqI嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息