产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
单相定时同步的PWM控制器CXSD62102驱动N通道mosfet瞬态响应和准确的直流电压以PFM或PWM模式输出
发表时间:2020-04-22浏览次数:77
单相定时同步的PWM控制器CXSD62102驱动N通道mosfet瞬态响应和准确的直流电压以PFM或PWM模式输出
 

目录1kv嘉泰姆

1.产品概述                       2.产品特点1kv嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 1kv嘉泰姆
5.产品封装图                     6.电路原理图                   1kv嘉泰姆
7.功能概述                        8.相关产品1kv嘉泰姆

一,产品概述(General Description)         1kv嘉泰姆
            The CXSD62102 is a single-phase, constant on-time, synchronous PWM1kv嘉泰姆
controller, which drives N-channel MOSFETs. The CXSD62102 steps down high1kv嘉泰姆
voltage to generate low-voltage chipset or RAM supplies in notebook computers.1kv嘉泰姆
The CXSD62102 provides excellent transient response and accurate DC voltage1kv嘉泰姆
output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), theCXSD62102 provides very high efficiency over light to heavy loads with loading-1kv嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly at1kv嘉泰姆
constant frequency for low-noise requirements. CXSD62102 is built in remote1kv嘉泰姆
sense function for applications that require remote sense.The CXSD62102 is1kv嘉泰姆
equipped with accurate positive current limit, output under-voltage, and output1kv嘉泰姆
over-voltage protections, perfect for NB applications. The Power-On-Reset1kv嘉泰姆
function monitors the voltage on VCC to prevent wrong operation during1kv嘉泰姆
power-on. The CXSD62102 has a 1ms digital soft start and built-in an integrated1kv嘉泰姆
output discharge device for soft stop. An internal integrated soft-start ramps up1kv嘉泰姆
the output voltage with programmable slew rate to reduce the start-up current.1kv嘉泰姆
A soft-stop function actively discharges the output capacitors.1kv嘉泰姆
       The CXSD62102 is available in 16pin TQFN3x3-16 package respectively.1kv嘉泰姆
二.产品特点(Features)1kv嘉泰姆
1.)Adjustable Output Voltage from +0.6V to +3.3V1kv嘉泰姆
      - 0.6V Reference Voltage1kv嘉泰姆
      - ±0.6% Accuracy Over-Temperature1kv嘉泰姆
2.)Operates from An Input Battery Voltage Range of +1.8V to +28V1kv嘉泰姆
3.)Remote Feedback Sense for Excellent Output Voltage1kv嘉泰姆
4.)REFIN Function for Over-clocking Purpose from 0.5V~2.5V range1kv嘉泰姆
5.)Power-On-Reset Monitoring on VCC pin1kv嘉泰姆
6.)Excellent line and load transient responses1kv嘉泰姆
7.)PFM mode for increased light load efficiency1kv嘉泰姆
8.)Programmable PWM Frequency from 100kHz to 500kHz1kv嘉泰姆
9.)Selectable Forced PWM or automatic PFM/PWM mode1kv嘉泰姆
10.)Built in 30A Output current driving capabilityIntegrate MOSFET Drivers1kv嘉泰姆
11.)Integrated Bootstrap Forward P-CH MOSFET1kv嘉泰姆
12.)Adjustable Integrated Soft-Start and Soft-Stop Power Good Monitoring1kv嘉泰姆
13.)70% Under-Voltage Protection1kv嘉泰姆
14.)125% Over-Voltage Protection TQFN3x3-16 Package1kv嘉泰姆
15.)Lead Free and Green Devices Available1kv嘉泰姆
三,应用范围 (Applications)1kv嘉泰姆
Notebook1kv嘉泰姆
Table PC1kv嘉泰姆
Hand-Held Portable1kv嘉泰姆
AIO PC1kv嘉泰姆
四.下载产品资料PDF文档 1kv嘉泰姆

需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持1kv嘉泰姆

 QQ截图20160419174301.jpg1kv嘉泰姆

五,产品封装图 (Package)1kv嘉泰姆

blob.png1kv嘉泰姆

六.电路原理图1kv嘉泰姆


blob.png1kv嘉泰姆
blob.png1kv嘉泰姆

七,功能概述1kv嘉泰姆


Input Capacitor Selection (Cont.)1kv嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout. 1kv嘉泰姆
MOSFET Selection1kv嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs should1kv嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driver will not charge the miller capacitor of this MOSFET.1kv嘉泰姆
In the turning off process of the low-side MOSFET, the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switching1kv嘉泰姆
loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. The high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to the MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.1kv嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:1kv嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximately1kv嘉泰姆
given by the following equations:1kv嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSW1kv嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D) is the load current TC is the temperature dependency of RDS(ON)1kv嘉泰姆
FSW is the switching frequency tSW is the switching interval D is the duty cycleNote that both MOSFETs have conduction losses while the high-side MOSFET includes an additional transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET.1kv嘉泰姆
Layout Consideration1kv嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.1kv嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike across1kv嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transition1kv嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,1kv嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasitic1kv嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short and1kv嘉泰姆
wide printed circuit traces should minimize interconnect-ing impedances and the magnitude of voltage spike.1kv嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground plane construc-1kv嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-1kv嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are not1kv嘉泰姆

八,相关产品                更多同类产品......1kv嘉泰姆


Switching Regulator >   Buck Controller1kv嘉泰姆

Part_No 1kv嘉泰姆

Package 1kv嘉泰姆

Archi1kv嘉泰姆

tectu1kv嘉泰姆

Phase1kv嘉泰姆

No.of1kv嘉泰姆

PWM1kv嘉泰姆

Output1kv嘉泰姆

Output 1kv嘉泰姆

Current1kv嘉泰姆

(A) 1kv嘉泰姆

Input1kv嘉泰姆

Voltage (V) 1kv嘉泰姆

Reference1kv嘉泰姆

Voltage1kv嘉泰姆

(V) 1kv嘉泰姆

Bias 1kv嘉泰姆

Voltage1kv嘉泰姆

(V) 1kv嘉泰姆

Quiescent1kv嘉泰姆

Current1kv嘉泰姆

(uA) 1kv嘉泰姆

min1kv嘉泰姆

max1kv嘉泰姆

CXSD62731kv嘉泰姆

SOP-141kv嘉泰姆

QSOP-161kv嘉泰姆

QFN4x4-161kv嘉泰姆

VM    1kv嘉泰姆

1   1kv嘉泰姆

1     1kv嘉泰姆

301kv嘉泰姆

2.9    1kv嘉泰姆

13.21kv嘉泰姆

0.91kv嘉泰姆

12     1kv嘉泰姆

80001kv嘉泰姆

CXSD62741kv嘉泰姆

SOP-81kv嘉泰姆

VM   1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

201kv嘉泰姆

2.9  1kv嘉泰姆

13.2 1kv嘉泰姆

0.81kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD6274C1kv嘉泰姆

SOP-81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

201kv嘉泰姆

2.91kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD62751kv嘉泰姆

QFN4x4-241kv嘉泰姆

VM1kv嘉泰姆

21kv嘉泰姆

11kv嘉泰姆

601kv嘉泰姆

3.11kv嘉泰姆

13.21kv嘉泰姆

0.61kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD62761kv嘉泰姆

SOP-81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

201kv嘉泰姆

2.21kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

5~121kv嘉泰姆

21001kv嘉泰姆

CXSD6276A1kv嘉泰姆

SOP-81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

201kv嘉泰姆

2.21kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

5~121kv嘉泰姆

21001kv嘉泰姆

CXSD6277/A/B1kv嘉泰姆

SOP8|TSSOP81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

51kv嘉泰姆

51kv嘉泰姆

13.21kv嘉泰姆

1.25|0.81kv嘉泰姆

5~121kv嘉泰姆

30001kv嘉泰姆

CXSD62781kv嘉泰姆

SOP-81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

101kv嘉泰姆

3.31kv嘉泰姆

5.51kv嘉泰姆

0.81kv嘉泰姆

51kv嘉泰姆

21001kv嘉泰姆

CXSD6279B1kv嘉泰姆

SOP-141kv嘉泰姆

VM   1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

101kv嘉泰姆

51kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

121kv嘉泰姆

20001kv嘉泰姆

CXSD62801kv嘉泰姆

TSSOP-241kv嘉泰姆

|QFN5x5-321kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

21kv嘉泰姆

201kv嘉泰姆

51kv嘉泰姆

13.21kv嘉泰姆

0.61kv嘉泰姆

5~121kv嘉泰姆

40001kv嘉泰姆

CXSD6281N1kv嘉泰姆

SOP141kv嘉泰姆

QSOP161kv嘉泰姆

QFN-161kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

301kv嘉泰姆

2.91kv嘉泰姆

13.21kv嘉泰姆

0.91kv嘉泰姆

121kv嘉泰姆

40001kv嘉泰姆

CXSD62821kv嘉泰姆

SOP-141kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

301kv嘉泰姆

2.21kv嘉泰姆

13.21kv嘉泰姆

0.61kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD6282A1kv嘉泰姆

SOP-141kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

301kv嘉泰姆

2.21kv嘉泰姆

13.21kv嘉泰姆

0.61kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD62831kv嘉泰姆

SOP-141kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

251kv嘉泰姆

2.21kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

121kv嘉泰姆

50001kv嘉泰姆

CXSD6284/A1kv嘉泰姆

LQFP7x7 481kv嘉泰姆

TQFN7x7-481kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

61kv嘉泰姆

0.0151kv嘉泰姆

1.41kv嘉泰姆

6.51kv嘉泰姆

-1kv嘉泰姆

51kv嘉泰姆

18001kv嘉泰姆

CXSD62851kv嘉泰姆

TSSOP-24P1kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

21kv嘉泰姆

201kv嘉泰姆

2.971kv嘉泰姆

5.51kv嘉泰姆

0.81kv嘉泰姆

5~121kv嘉泰姆

50001kv嘉泰姆

CXSD62861kv嘉泰姆

SOP-141kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

101kv嘉泰姆

51kv嘉泰姆

13.21kv嘉泰姆

0.81kv嘉泰姆

121kv嘉泰姆

30001kv嘉泰姆

CXSD62871kv嘉泰姆

SOP-8-P|DIP-81kv嘉泰姆

VM1kv嘉泰姆

11kv嘉泰姆

11kv嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息