产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
单相定时同步的PWM控制器CXSD62102驱动N通道mosfet瞬态响应和准确的直流电压以PFM或PWM模式输出
发表时间:2020-04-22浏览次数:93
单相定时同步的PWM控制器CXSD62102驱动N通道mosfet瞬态响应和准确的直流电压以PFM或PWM模式输出
 

目录uEB嘉泰姆

1.产品概述                       2.产品特点uEB嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 uEB嘉泰姆
5.产品封装图                     6.电路原理图                   uEB嘉泰姆
7.功能概述                        8.相关产品uEB嘉泰姆

一,产品概述(General Description)         uEB嘉泰姆
            The CXSD62102 is a single-phase, constant on-time, synchronous PWMuEB嘉泰姆
controller, which drives N-channel MOSFETs. The CXSD62102 steps down highuEB嘉泰姆
voltage to generate low-voltage chipset or RAM supplies in notebook computers.uEB嘉泰姆
The CXSD62102 provides excellent transient response and accurate DC voltageuEB嘉泰姆
output in either PFM or PWM Mode.In Pulse Frequency Mode (PFM), theCXSD62102 provides very high efficiency over light to heavy loads with loading-uEB嘉泰姆
modulated switching frequencies. In PWM Mode, the converter works nearly atuEB嘉泰姆
constant frequency for low-noise requirements. CXSD62102 is built in remoteuEB嘉泰姆
sense function for applications that require remote sense.The CXSD62102 isuEB嘉泰姆
equipped with accurate positive current limit, output under-voltage, and outputuEB嘉泰姆
over-voltage protections, perfect for NB applications. The Power-On-ResetuEB嘉泰姆
function monitors the voltage on VCC to prevent wrong operation duringuEB嘉泰姆
power-on. The CXSD62102 has a 1ms digital soft start and built-in an integrateduEB嘉泰姆
output discharge device for soft stop. An internal integrated soft-start ramps upuEB嘉泰姆
the output voltage with programmable slew rate to reduce the start-up current.uEB嘉泰姆
A soft-stop function actively discharges the output capacitors.uEB嘉泰姆
       The CXSD62102 is available in 16pin TQFN3x3-16 package respectively.uEB嘉泰姆
二.产品特点(Features)uEB嘉泰姆
1.)Adjustable Output Voltage from +0.6V to +3.3VuEB嘉泰姆
      - 0.6V Reference VoltageuEB嘉泰姆
      - ±0.6% Accuracy Over-TemperatureuEB嘉泰姆
2.)Operates from An Input Battery Voltage Range of +1.8V to +28VuEB嘉泰姆
3.)Remote Feedback Sense for Excellent Output VoltageuEB嘉泰姆
4.)REFIN Function for Over-clocking Purpose from 0.5V~2.5V rangeuEB嘉泰姆
5.)Power-On-Reset Monitoring on VCC pinuEB嘉泰姆
6.)Excellent line and load transient responsesuEB嘉泰姆
7.)PFM mode for increased light load efficiencyuEB嘉泰姆
8.)Programmable PWM Frequency from 100kHz to 500kHzuEB嘉泰姆
9.)Selectable Forced PWM or automatic PFM/PWM modeuEB嘉泰姆
10.)Built in 30A Output current driving capabilityIntegrate MOSFET DriversuEB嘉泰姆
11.)Integrated Bootstrap Forward P-CH MOSFETuEB嘉泰姆
12.)Adjustable Integrated Soft-Start and Soft-Stop Power Good MonitoringuEB嘉泰姆
13.)70% Under-Voltage ProtectionuEB嘉泰姆
14.)125% Over-Voltage Protection TQFN3x3-16 PackageuEB嘉泰姆
15.)Lead Free and Green Devices AvailableuEB嘉泰姆
三,应用范围 (Applications)uEB嘉泰姆
NotebookuEB嘉泰姆
Table PCuEB嘉泰姆
Hand-Held PortableuEB嘉泰姆
AIO PCuEB嘉泰姆
四.下载产品资料PDF文档 uEB嘉泰姆

需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持uEB嘉泰姆

 QQ截图20160419174301.jpguEB嘉泰姆

五,产品封装图 (Package)uEB嘉泰姆

blob.pnguEB嘉泰姆

六.电路原理图uEB嘉泰姆


blob.pnguEB嘉泰姆
blob.pnguEB嘉泰姆

七,功能概述uEB嘉泰姆


Input Capacitor Selection (Cont.)uEB嘉泰姆
higher than the maximum input voltage. The maximum RMS current rating requirement is approximately IOUT/2,where IOUT is the load current. During power-up, the input capacitors have to handle great amount of surge current.For low-duty notebook appliactions, ceramic capacitor is recommended. The capacitors must be connected be-tween the drain of high-side MOSFET and the source of low-side MOSFET with very low-impeadance PCB layout. uEB嘉泰姆
MOSFET SelectionuEB嘉泰姆
The application for a notebook battery with a maximum voltage of 24V, at least a minimum 30V MOSFETs shoulduEB嘉泰姆
be used. The design has to trade off the gate charge with the RDS(ON) of the MOSFET:For the low-side MOSFET, before it is turned on, the body diode has been conducting. The low-side MOSFET driver will not charge the miller capacitor of this MOSFET.uEB嘉泰姆
In the turning off process of the low-side MOSFET, the load current will shift to the body diode first. The high dv/dt of the phase node voltage will charge the miller capaci-tor through the low-side MOSFET driver sinking current path. This results in much less switchinguEB嘉泰姆
loss of the low-side MOSFETs. The duty cycle is often very small in high battery voltage applications, and the low-side MOSFET will conduct most of the switching cycle; therefore, when using smaller RDS(ON) of the low-side MOSFET, the con-verter can reduce power loss. The gate charge for this MOSFET is usually the secondary consideration. The high-side MOSFET does not have this zero voltage switch-ing condition; in addition, it conducts for less time com-pared to the low-side MOSFET, so the switching loss tends to be dominant. Priority should be given to the MOSFETs with less gate charge, so that both the gate driver loss and switching loss will be minimized.uEB嘉泰姆
The selection of the N-channel power MOSFETs are determined by the R DS(ON), reversing transfer capaci-tance (CRSS) and maximum output current requirement.The losses in the MOSFETs have two components:uEB嘉泰姆
conduction loss and transition loss. For the high-side and low-side MOSFETs, the losses are approximatelyuEB嘉泰姆
given by the following equations:uEB嘉泰姆
Phigh-side = IOUT (1+ TC)(RDS(ON))D + (0.5)( IOUT)(VIN)( tSW)FSWuEB嘉泰姆
Plow-side = IOUT (1+ TC)(RDS(ON))(1-D) is the load current TC is the temperature dependency of RDS(ON)uEB嘉泰姆
FSW is the switching frequency tSW is the switching interval D is the duty cycleNote that both MOSFETs have conduction losses while the high-side MOSFET includes an additional transition loss.The switching interval, tSW, is the function of the reverse transfer capacitance CRSS. The (1+TC) term is a factor in the temperature dependency of the RDS(ON) and can be extracted from the “RDS(ON) vs. Temperature” curve of the power MOSFET.uEB嘉泰姆
Layout ConsiderationuEB嘉泰姆
In any high switching frequency converter, a correct layout is important to ensure proper operation of the regulator.uEB嘉泰姆
With power devices switching at higher frequency, the resulting current transient will cause voltage spike acrossuEB嘉泰姆
the interconnecting impedance and parasitic circuit elements. As an example, consider the turn-off transitionuEB嘉泰姆
of the PWM MOSFET. Before turn-off condition, the MOSFET is carrying the full load current. During turn-off,uEB嘉泰姆
current stops flowing in the MOSFET and is freewheeling by the low side MOSFET and parasitic diode. Any parasiticuEB嘉泰姆
inductance of the circuit generates a large voltage spike during the switching interval. In general, using short anduEB嘉泰姆
wide printed circuit traces should minimize interconnect-ing impedances and the magnitude of voltage spike.uEB嘉泰姆
Besides, signal and power grounds are to be kept sepa-rating and finally combined using ground plane construc-uEB嘉泰姆
tion or single point grounding. The best tie-point between the signal ground and the power ground is at the nega-uEB嘉泰姆
tive side of the output capacitor on each channel, where there is less noise. Noisy traces beneath the IC are notuEB嘉泰姆

八,相关产品                更多同类产品......uEB嘉泰姆


Switching Regulator >   Buck ControlleruEB嘉泰姆

Part_No uEB嘉泰姆

Package uEB嘉泰姆

ArchiuEB嘉泰姆

tectuuEB嘉泰姆

PhaseuEB嘉泰姆

No.ofuEB嘉泰姆

PWMuEB嘉泰姆

OutputuEB嘉泰姆

Output uEB嘉泰姆

CurrentuEB嘉泰姆

(A) uEB嘉泰姆

InputuEB嘉泰姆

Voltage (V) uEB嘉泰姆

ReferenceuEB嘉泰姆

VoltageuEB嘉泰姆

(V) uEB嘉泰姆

Bias uEB嘉泰姆

VoltageuEB嘉泰姆

(V) uEB嘉泰姆

QuiescentuEB嘉泰姆

CurrentuEB嘉泰姆

(uA) uEB嘉泰姆

minuEB嘉泰姆

maxuEB嘉泰姆

CXSD6273uEB嘉泰姆

SOP-14uEB嘉泰姆

QSOP-16uEB嘉泰姆

QFN4x4-16uEB嘉泰姆

VM    uEB嘉泰姆

1   uEB嘉泰姆

1     uEB嘉泰姆

30uEB嘉泰姆

2.9    uEB嘉泰姆

13.2uEB嘉泰姆

0.9uEB嘉泰姆

12     uEB嘉泰姆

8000uEB嘉泰姆

CXSD6274uEB嘉泰姆

SOP-8uEB嘉泰姆

VM   uEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

20uEB嘉泰姆

2.9  uEB嘉泰姆

13.2 uEB嘉泰姆

0.8uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6274CuEB嘉泰姆

SOP-8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

20uEB嘉泰姆

2.9uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6275uEB嘉泰姆

QFN4x4-24uEB嘉泰姆

VMuEB嘉泰姆

2uEB嘉泰姆

1uEB嘉泰姆

60uEB嘉泰姆

3.1uEB嘉泰姆

13.2uEB嘉泰姆

0.6uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6276uEB嘉泰姆

SOP-8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

20uEB嘉泰姆

2.2uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

5~12uEB嘉泰姆

2100uEB嘉泰姆

CXSD6276AuEB嘉泰姆

SOP-8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

20uEB嘉泰姆

2.2uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

5~12uEB嘉泰姆

2100uEB嘉泰姆

CXSD6277/A/BuEB嘉泰姆

SOP8|TSSOP8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

5uEB嘉泰姆

5uEB嘉泰姆

13.2uEB嘉泰姆

1.25|0.8uEB嘉泰姆

5~12uEB嘉泰姆

3000uEB嘉泰姆

CXSD6278uEB嘉泰姆

SOP-8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

10uEB嘉泰姆

3.3uEB嘉泰姆

5.5uEB嘉泰姆

0.8uEB嘉泰姆

5uEB嘉泰姆

2100uEB嘉泰姆

CXSD6279BuEB嘉泰姆

SOP-14uEB嘉泰姆

VM   uEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

10uEB嘉泰姆

5uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

12uEB嘉泰姆

2000uEB嘉泰姆

CXSD6280uEB嘉泰姆

TSSOP-24uEB嘉泰姆

|QFN5x5-32uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

2uEB嘉泰姆

20uEB嘉泰姆

5uEB嘉泰姆

13.2uEB嘉泰姆

0.6uEB嘉泰姆

5~12uEB嘉泰姆

4000uEB嘉泰姆

CXSD6281NuEB嘉泰姆

SOP14uEB嘉泰姆

QSOP16uEB嘉泰姆

QFN-16uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

30uEB嘉泰姆

2.9uEB嘉泰姆

13.2uEB嘉泰姆

0.9uEB嘉泰姆

12uEB嘉泰姆

4000uEB嘉泰姆

CXSD6282uEB嘉泰姆

SOP-14uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

30uEB嘉泰姆

2.2uEB嘉泰姆

13.2uEB嘉泰姆

0.6uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6282AuEB嘉泰姆

SOP-14uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

30uEB嘉泰姆

2.2uEB嘉泰姆

13.2uEB嘉泰姆

0.6uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6283uEB嘉泰姆

SOP-14uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

25uEB嘉泰姆

2.2uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6284/AuEB嘉泰姆

LQFP7x7 48uEB嘉泰姆

TQFN7x7-48uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

6uEB嘉泰姆

0.015uEB嘉泰姆

1.4uEB嘉泰姆

6.5uEB嘉泰姆

-uEB嘉泰姆

5uEB嘉泰姆

1800uEB嘉泰姆

CXSD6285uEB嘉泰姆

TSSOP-24PuEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

2uEB嘉泰姆

20uEB嘉泰姆

2.97uEB嘉泰姆

5.5uEB嘉泰姆

0.8uEB嘉泰姆

5~12uEB嘉泰姆

5000uEB嘉泰姆

CXSD6286uEB嘉泰姆

SOP-14uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

10uEB嘉泰姆

5uEB嘉泰姆

13.2uEB嘉泰姆

0.8uEB嘉泰姆

12uEB嘉泰姆

3000uEB嘉泰姆

CXSD6287uEB嘉泰姆

SOP-8-P|DIP-8uEB嘉泰姆

VMuEB嘉泰姆

1uEB嘉泰姆

1uEB嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息