产品信息查询
产品 新闻 资料
首页 > 新闻中心 > 行业新闻
CXSD6289两个同步降压型脉宽调制控制器脉冲宽度调制控制器设计用于同步驱动两个N通道mosfet buck拓扑
发表时间:2020-04-22浏览次数:109
CXSD6289两个同步降压型脉宽调制控制器脉冲宽度调制控制器设计用于同步驱动两个N通道mosfet buck拓扑
 

目录wIH嘉泰姆

1.产品概述                       2.产品特点wIH嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 wIH嘉泰姆
5.产品封装图                     6.电路原理图                   wIH嘉泰姆
7.功能概述                        8.相关产品wIH嘉泰姆

一,产品概述(General Description)      wIH嘉泰姆


          The CXSD6289 has two synchronous buck PWM control-lers with highwIH嘉泰姆
precision internal references voltage to of-fer accurate outputs. The PWMwIH嘉泰姆
controllers are designed to drive two N-channel MOSFETs in synchronouswIH嘉泰姆
buck topology. The device requires 12V and 5V power supplies.If the 5VwIH嘉泰姆
supply is not available, the device can offer an optional shunt regulatorwIH嘉泰姆
5.8V for 5V supply.Both outputs have independent soft-start and enablewIH嘉泰姆
func-tions combined on the SS/EN pin. Connecting a capaci-tor from eachwIH嘉泰姆
SS/EN pin to the ground for setting the soft-start time, and pulling the SS/ENwIH嘉泰姆
pin voltage below 1V to disable regulator. The device also offers 180°phasewIH嘉泰姆
shift function between OUT1 and OUT2.The default switching frequency iswIH嘉泰姆
300kHz (keep the FS pin open or short to GND), and the device also provideswIH嘉泰姆
the programmable switching frequency function to ad-just the switching frequencywIH嘉泰姆
from 70kHz to 800kHz. Con-necting a resistor from FS pin to GND increases thewIH嘉泰姆
switching frequency. Conversely, connecting a resistor from FS pin to VCC12wIH嘉泰姆
decreases the switching frequency.There is no current sensing or under-voltagewIH嘉泰姆
sensing on the CXSD6289. However, it provides a simple short-circuit protection by monitoring the COMP1 pin and COMP2 pin for over-voltage. When any of two pinswIH嘉泰姆
exceed their trip point and the condition keeps for 1-2 internal clock cycles (3-6us atwIH嘉泰姆
300kHz), all regulators are latched off.wIH嘉泰姆
二.产品特点(Features)wIH嘉泰姆


1.)Two Synchronous Buck Converters(OUT1,OUT2)wIH嘉泰姆
2.)Converter Input Voltage Range up to 12VwIH嘉泰姆
3.)0.6V Reference for OUT1 with 0.8% AccuracywIH嘉泰姆
4.)3.3V Reference for OUT2 with 0.8% AccuracywIH嘉泰姆
5.)Both Outputs have Independent Soft-Start andwIH嘉泰姆
    Enable FunctionswIH嘉泰姆
6.)Internal 300kHz Oscillator and ProgrammablewIH嘉泰姆
    Frequency Range from 70 kHz to 800kHzwIH嘉泰姆
7.)180 Degrees Phase Shift etween OUT1 and OUT2wIH嘉泰姆
8.)Short-Circuit ProtectionwIH嘉泰姆
9.)Thermally Enhanced SOP-20 PackagewIH嘉泰姆
10.)Lead Free and Green Devices AvailablewIH嘉泰姆
(RoHS Compliant)wIH嘉泰姆
三,应用范围 (Applications)wIH嘉泰姆


Graphic CardswIH嘉泰姆
Low-Voltage Distributed Power SupplieswIH嘉泰姆
SMPS ApplicationwIH嘉泰姆
四.下载产品资料PDF文档 wIH嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持wIH嘉泰姆

 QQ截图20160419174301.jpgwIH嘉泰姆

五,产品封装图 (Package)wIH嘉泰姆
blob.pngwIH嘉泰姆

六.电路原理图wIH嘉泰姆


blob.pngwIH嘉泰姆
七,功能概述wIH嘉泰姆


Output Inductor Selection (Cont.)wIH嘉泰姆
Where Fs is the switching frequency of the regulator. Al-though increase the inductor value and frequencywIH嘉泰姆
reduce the ripple current and voltage, but there is a tradeoff ex-ists between the inductor’s ripple current andwIH嘉泰姆
the regula-tor load transient response time.A smaller inductor will give the regulator a faster load transientwIH嘉泰姆
response at the expense of higher ripple current.Increasing the switching frequency (FS) also reduces thewIH嘉泰姆
ripple current and voltage, but it will increase the switch-ing loss of the MOSFET and the power dissipationwIH嘉泰姆
of the converter. The maximum ripple current occurs at the maximum input voltage. A good starting point iswIH嘉泰姆
to choose the ripple current to be approximately 30% of the maxi-mum output current.Once the inductancewIH嘉泰姆
value has been chosen, select an inductor that is capable of carrying the required peak cur-rent without goingwIH嘉泰姆
into saturation. In some types of inductors, especially core that is made of ferrite, the ripple current will increasewIH嘉泰姆
abruptly when it saturates. This will result in a larger output ripple voltage.wIH嘉泰姆
Output Capacitor SelectionwIH嘉泰姆
Higher Capacitor value and lower ESR reduce the output ripple and the load transient drop. Therefore select highwIH嘉泰姆
performance low ESR capacitors that are intended for switching regulator applications. In some applications,wIH嘉泰姆
multiple capacitors have to be parallel to achieve the de-sired ESR value. A small decoupling capacitor in parallelwIH嘉泰姆
for bypassing the noise is also recommended, and the voltage rating of the output capacitors are also must bewIH嘉泰姆
considered. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt,wIH嘉泰姆
consult the capacitors manufacturer.wIH嘉泰姆
Input Capacitor SelectionwIH嘉泰姆
The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, wIH嘉泰姆

select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage.wIH嘉泰姆
The maximum RMS current rating requirement is approxi-mately IOUT/2, where IOUT is the load current. wIH嘉泰姆

During power up, the input capacitors have to handle large amount of surge current. If tantalum capacitors wIH嘉泰姆

are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors wIH嘉泰姆

manufacturer. For high frequency decoupling, a ceramic capacitor 1uF can be connected between the wIH嘉泰姆

drain of upper MOSFET and the source of lower MOSFETwIH嘉泰姆
MOSFET SelectionwIH嘉泰姆
The selection of the N-channel power MOSFETs are de-termined by the RDS(ON), reverse transfer wIH嘉泰姆

capacitance (CRSS) and maximum output current requirement. The losses in the MOSFETs have wIH嘉泰姆

two components: conduction loss and transition loss. For the upper and lower MOSFET, the wIH嘉泰姆

losses are approximately given by the following :wIH嘉泰姆
PUPPER=IOUT(1+TC)(RDS(ON))D+(0.5)(IOUT)(VIN)(tSW)FSwIH嘉泰姆
PLOWER=IOUT(1+TC)(RDS(ON))(1-D)wIH嘉泰姆
Where I is the load current OUT TC is the temperature dependency of RDS(ON) F is the switchingwIH嘉泰姆

 frequency St is the switching interval sw D is the duty cycle Note that both MOSFETs have wIH嘉泰姆

conduction losses while the upper MOSFET include an additional transition loss.The switching wIH嘉泰姆

internal, tsw, is a function of the reverse transfer capacitance CRSS. The (1+TC) term is to wIH嘉泰姆

factor in the temperature depen-dency of the RDS(ON) and can be extracted from the “RDS(ON)wIH嘉泰姆
vs Temperature” curve of the power MOSFET.wIH嘉泰姆
Short Circuit ProtectionwIH嘉泰姆
The CXSD6289 provides a simple short circuit protection function, and it is not easy to predict itswIH嘉泰姆

 performance, since many factors can affect how well it works. Therefore, the limitations and wIH嘉泰姆

suggestions of this method must be pro-vided for users to understand how to work it well.ThewIH嘉泰姆

 short circuit protection was not designed to work for the output in initial short condition. In this wIH嘉泰姆

case, the short circuit protection may not work, and damage the MOSFETs. If the circuit still works,wIH嘉泰姆

 remove the short can cause an inductive kick on the phase pin, and it may damage the IC and wIH嘉泰姆

MOSFETs.  If the resistance of the short is not low enough to cause protection, the regulator willwIH嘉泰姆

 work as the load haswIH嘉泰姆

Short Circuit Protection (Cont.)wIH嘉泰姆
increased, and continue to regulate up until the MOSFETs is damaged. The resistance of the shortwIH嘉泰姆

 should include wiring, PCB traces, contact resistances, and all of the return paths.The higher duty wIH嘉泰姆

cycle will give a higher COMP voltage level, and it is easy to touch the trip point. The compensa-wIH嘉泰姆
tion components also affect the response of COMP voltage; smaller caps may give a faster response.wIH嘉泰姆
The output current has faster rising time during short;the COMP pin will have a sharp rise. However,wIH嘉泰姆

 if the cur-rent rises too fast, it may cause a false trip. The output capacitance and its ESR can affectwIH嘉泰姆

 the rising time of the current during short.wIH嘉泰姆

八,相关产品                 更多同类产品......wIH嘉泰姆


Switching Regulator >   Buck ControllerwIH嘉泰姆

Part_No wIH嘉泰姆

Package wIH嘉泰姆

ArchiwIH嘉泰姆

tectuwIH嘉泰姆

PhasewIH嘉泰姆

No.ofwIH嘉泰姆

PWMwIH嘉泰姆

OutputwIH嘉泰姆

Output wIH嘉泰姆

CurrentwIH嘉泰姆

(A) wIH嘉泰姆

InputwIH嘉泰姆

Voltage (V) wIH嘉泰姆

ReferencewIH嘉泰姆

VoltagewIH嘉泰姆

(V) wIH嘉泰姆

Bias wIH嘉泰姆

VoltagewIH嘉泰姆

(V) wIH嘉泰姆

QuiescentwIH嘉泰姆

CurrentwIH嘉泰姆

(uA) wIH嘉泰姆

minwIH嘉泰姆

maxwIH嘉泰姆

CXSD6273wIH嘉泰姆

SOP-14wIH嘉泰姆

QSOP-16wIH嘉泰姆

QFN4x4-16wIH嘉泰姆

VM    wIH嘉泰姆

1   wIH嘉泰姆

1     wIH嘉泰姆

30wIH嘉泰姆

2.9    wIH嘉泰姆

13.2wIH嘉泰姆

0.9wIH嘉泰姆

12     wIH嘉泰姆

8000wIH嘉泰姆

CXSD6274wIH嘉泰姆

SOP-8wIH嘉泰姆

VM   wIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

20wIH嘉泰姆

2.9  wIH嘉泰姆

13.2 wIH嘉泰姆

0.8wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6274CwIH嘉泰姆

SOP-8wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

20wIH嘉泰姆

2.9wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6275wIH嘉泰姆

QFN4x4-24wIH嘉泰姆

VMwIH嘉泰姆

2wIH嘉泰姆

1wIH嘉泰姆

60wIH嘉泰姆

3.1wIH嘉泰姆

13.2wIH嘉泰姆

0.6wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6276wIH嘉泰姆

SOP-8wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

20wIH嘉泰姆

2.2wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

5~12wIH嘉泰姆

2100wIH嘉泰姆

CXSD6276AwIH嘉泰姆

SOP-8wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

20wIH嘉泰姆

2.2wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

5~12wIH嘉泰姆

2100wIH嘉泰姆

CXSD6277/A/BwIH嘉泰姆

SOP8|TSSOP8wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

5wIH嘉泰姆

5wIH嘉泰姆

13.2wIH嘉泰姆

1.25|0.8wIH嘉泰姆

5~12wIH嘉泰姆

3000wIH嘉泰姆

CXSD6278wIH嘉泰姆

SOP-8wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

10wIH嘉泰姆

3.3wIH嘉泰姆

5.5wIH嘉泰姆

0.8wIH嘉泰姆

5wIH嘉泰姆

2100wIH嘉泰姆

CXSD6279BwIH嘉泰姆

SOP-14wIH嘉泰姆

VM   wIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

10wIH嘉泰姆

5wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

12wIH嘉泰姆

2000wIH嘉泰姆

CXSD6280wIH嘉泰姆

TSSOP-24wIH嘉泰姆

|QFN5x5-32wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

2wIH嘉泰姆

20wIH嘉泰姆

5wIH嘉泰姆

13.2wIH嘉泰姆

0.6wIH嘉泰姆

5~12wIH嘉泰姆

4000wIH嘉泰姆

CXSD6281NwIH嘉泰姆

SOP14wIH嘉泰姆

QSOP16wIH嘉泰姆

QFN-16wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

30wIH嘉泰姆

2.9wIH嘉泰姆

13.2wIH嘉泰姆

0.9wIH嘉泰姆

12wIH嘉泰姆

4000wIH嘉泰姆

CXSD6282wIH嘉泰姆

SOP-14wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

30wIH嘉泰姆

2.2wIH嘉泰姆

13.2wIH嘉泰姆

0.6wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6282AwIH嘉泰姆

SOP-14wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

30wIH嘉泰姆

2.2wIH嘉泰姆

13.2wIH嘉泰姆

0.6wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6283wIH嘉泰姆

SOP-14wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

25wIH嘉泰姆

2.2wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6284/AwIH嘉泰姆

LQFP7x7 48wIH嘉泰姆

TQFN7x7-48wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

6wIH嘉泰姆

0.015wIH嘉泰姆

1.4wIH嘉泰姆

6.5wIH嘉泰姆

-wIH嘉泰姆

5wIH嘉泰姆

1800wIH嘉泰姆

CXSD6285wIH嘉泰姆

TSSOP-24PwIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

2wIH嘉泰姆

20wIH嘉泰姆

2.97wIH嘉泰姆

5.5wIH嘉泰姆

0.8wIH嘉泰姆

5~12wIH嘉泰姆

5000wIH嘉泰姆

CXSD6286wIH嘉泰姆

SOP-14wIH嘉泰姆

VMwIH嘉泰姆

1wIH嘉泰姆

1wIH嘉泰姆

10wIH嘉泰姆

5wIH嘉泰姆

13.2wIH嘉泰姆

0.8wIH嘉泰姆

12wIH嘉泰姆

3000wIH嘉泰姆

CXSD6287wIH嘉泰姆

SOP-8-P|DIP-8wIH嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
热门信息
推荐信息
头条信息