产品信息查询
产品 技术 新闻 资料
首页 > 新闻中心 > 行业新闻
CXSD6289两个同步降压型脉宽调制控制器脉冲宽度调制控制器设计用于同步驱动两个N通道mosfet buck拓扑
发表时间:2020-04-22浏览次数:165
CXSD6289两个同步降压型脉宽调制控制器脉冲宽度调制控制器设计用于同步驱动两个N通道mosfet buck拓扑
 

目录Wcc嘉泰姆

1.产品概述                       2.产品特点Wcc嘉泰姆
3.应用范围                       4.下载产品资料PDF文档 Wcc嘉泰姆
5.产品封装图                     6.电路原理图                   Wcc嘉泰姆
7.功能概述                        8.相关产品Wcc嘉泰姆

一,产品概述(General Description)      Wcc嘉泰姆


          The CXSD6289 has two synchronous buck PWM control-lers with highWcc嘉泰姆
precision internal references voltage to of-fer accurate outputs. The PWMWcc嘉泰姆
controllers are designed to drive two N-channel MOSFETs in synchronousWcc嘉泰姆
buck topology. The device requires 12V and 5V power supplies.If the 5VWcc嘉泰姆
supply is not available, the device can offer an optional shunt regulatorWcc嘉泰姆
5.8V for 5V supply.Both outputs have independent soft-start and enableWcc嘉泰姆
func-tions combined on the SS/EN pin. Connecting a capaci-tor from eachWcc嘉泰姆
SS/EN pin to the ground for setting the soft-start time, and pulling the SS/ENWcc嘉泰姆
pin voltage below 1V to disable regulator. The device also offers 180°phaseWcc嘉泰姆
shift function between OUT1 and OUT2.The default switching frequency isWcc嘉泰姆
300kHz (keep the FS pin open or short to GND), and the device also providesWcc嘉泰姆
the programmable switching frequency function to ad-just the switching frequencyWcc嘉泰姆
from 70kHz to 800kHz. Con-necting a resistor from FS pin to GND increases theWcc嘉泰姆
switching frequency. Conversely, connecting a resistor from FS pin to VCC12Wcc嘉泰姆
decreases the switching frequency.There is no current sensing or under-voltageWcc嘉泰姆
sensing on the CXSD6289. However, it provides a simple short-circuit protection by monitoring the COMP1 pin and COMP2 pin for over-voltage. When any of two pinsWcc嘉泰姆
exceed their trip point and the condition keeps for 1-2 internal clock cycles (3-6us atWcc嘉泰姆
300kHz), all regulators are latched off.Wcc嘉泰姆
二.产品特点(Features)Wcc嘉泰姆


1.)Two Synchronous Buck Converters(OUT1,OUT2)Wcc嘉泰姆
2.)Converter Input Voltage Range up to 12VWcc嘉泰姆
3.)0.6V Reference for OUT1 with 0.8% AccuracyWcc嘉泰姆
4.)3.3V Reference for OUT2 with 0.8% AccuracyWcc嘉泰姆
5.)Both Outputs have Independent Soft-Start andWcc嘉泰姆
    Enable FunctionsWcc嘉泰姆
6.)Internal 300kHz Oscillator and ProgrammableWcc嘉泰姆
    Frequency Range from 70 kHz to 800kHzWcc嘉泰姆
7.)180 Degrees Phase Shift etween OUT1 and OUT2Wcc嘉泰姆
8.)Short-Circuit ProtectionWcc嘉泰姆
9.)Thermally Enhanced SOP-20 PackageWcc嘉泰姆
10.)Lead Free and Green Devices AvailableWcc嘉泰姆
(RoHS Compliant)Wcc嘉泰姆
三,应用范围 (Applications)Wcc嘉泰姆


Graphic CardsWcc嘉泰姆
Low-Voltage Distributed Power SuppliesWcc嘉泰姆
SMPS ApplicationWcc嘉泰姆
四.下载产品资料PDF文档 Wcc嘉泰姆


需要详细的PDF规格书请扫一扫微信联系我们,还可以获得免费样品以及技术支持Wcc嘉泰姆

 QQ截图20160419174301.jpgWcc嘉泰姆

五,产品封装图 (Package)Wcc嘉泰姆
blob.pngWcc嘉泰姆

六.电路原理图Wcc嘉泰姆


blob.pngWcc嘉泰姆
七,功能概述Wcc嘉泰姆


Output Inductor Selection (Cont.)Wcc嘉泰姆
Where Fs is the switching frequency of the regulator. Al-though increase the inductor value and frequencyWcc嘉泰姆
reduce the ripple current and voltage, but there is a tradeoff ex-ists between the inductor’s ripple current andWcc嘉泰姆
the regula-tor load transient response time.A smaller inductor will give the regulator a faster load transientWcc嘉泰姆
response at the expense of higher ripple current.Increasing the switching frequency (FS) also reduces theWcc嘉泰姆
ripple current and voltage, but it will increase the switch-ing loss of the MOSFET and the power dissipationWcc嘉泰姆
of the converter. The maximum ripple current occurs at the maximum input voltage. A good starting point isWcc嘉泰姆
to choose the ripple current to be approximately 30% of the maxi-mum output current.Once the inductanceWcc嘉泰姆
value has been chosen, select an inductor that is capable of carrying the required peak cur-rent without goingWcc嘉泰姆
into saturation. In some types of inductors, especially core that is made of ferrite, the ripple current will increaseWcc嘉泰姆
abruptly when it saturates. This will result in a larger output ripple voltage.Wcc嘉泰姆
Output Capacitor SelectionWcc嘉泰姆
Higher Capacitor value and lower ESR reduce the output ripple and the load transient drop. Therefore select highWcc嘉泰姆
performance low ESR capacitors that are intended for switching regulator applications. In some applications,Wcc嘉泰姆
multiple capacitors have to be parallel to achieve the de-sired ESR value. A small decoupling capacitor in parallelWcc嘉泰姆
for bypassing the noise is also recommended, and the voltage rating of the output capacitors are also must beWcc嘉泰姆
considered. If tantalum capacitors are used, make sure they are surge tested by the manufactures. If in doubt,Wcc嘉泰姆
consult the capacitors manufacturer.Wcc嘉泰姆
Input Capacitor SelectionWcc嘉泰姆
The input capacitor is chosen based on the voltage rating and the RMS current rating. For reliable operation, Wcc嘉泰姆

select the capacitor voltage rating to be at least 1.3 times higher than the maximum input voltage.Wcc嘉泰姆
The maximum RMS current rating requirement is approxi-mately IOUT/2, where IOUT is the load current. Wcc嘉泰姆

During power up, the input capacitors have to handle large amount of surge current. If tantalum capacitors Wcc嘉泰姆

are used, make sure they are surge tested by the manufactures. If in doubt, consult the capacitors Wcc嘉泰姆

manufacturer. For high frequency decoupling, a ceramic capacitor 1uF can be connected between the Wcc嘉泰姆

drain of upper MOSFET and the source of lower MOSFETWcc嘉泰姆
MOSFET SelectionWcc嘉泰姆
The selection of the N-channel power MOSFETs are de-termined by the RDS(ON), reverse transfer Wcc嘉泰姆

capacitance (CRSS) and maximum output current requirement. The losses in the MOSFETs have Wcc嘉泰姆

two components: conduction loss and transition loss. For the upper and lower MOSFET, the Wcc嘉泰姆

losses are approximately given by the following :Wcc嘉泰姆
PUPPER=IOUT(1+TC)(RDS(ON))D+(0.5)(IOUT)(VIN)(tSW)FSWcc嘉泰姆
PLOWER=IOUT(1+TC)(RDS(ON))(1-D)Wcc嘉泰姆
Where I is the load current OUT TC is the temperature dependency of RDS(ON) F is the switchingWcc嘉泰姆

 frequency St is the switching interval sw D is the duty cycle Note that both MOSFETs have Wcc嘉泰姆

conduction losses while the upper MOSFET include an additional transition loss.The switching Wcc嘉泰姆

internal, tsw, is a function of the reverse transfer capacitance CRSS. The (1+TC) term is to Wcc嘉泰姆

factor in the temperature depen-dency of the RDS(ON) and can be extracted from the “RDS(ON)Wcc嘉泰姆
vs Temperature” curve of the power MOSFET.Wcc嘉泰姆
Short Circuit ProtectionWcc嘉泰姆
The CXSD6289 provides a simple short circuit protection function, and it is not easy to predict itsWcc嘉泰姆

 performance, since many factors can affect how well it works. Therefore, the limitations and Wcc嘉泰姆

suggestions of this method must be pro-vided for users to understand how to work it well.TheWcc嘉泰姆

 short circuit protection was not designed to work for the output in initial short condition. In this Wcc嘉泰姆

case, the short circuit protection may not work, and damage the MOSFETs. If the circuit still works,Wcc嘉泰姆

 remove the short can cause an inductive kick on the phase pin, and it may damage the IC and Wcc嘉泰姆

MOSFETs.  If the resistance of the short is not low enough to cause protection, the regulator willWcc嘉泰姆

 work as the load hasWcc嘉泰姆

Short Circuit Protection (Cont.)Wcc嘉泰姆
increased, and continue to regulate up until the MOSFETs is damaged. The resistance of the shortWcc嘉泰姆

 should include wiring, PCB traces, contact resistances, and all of the return paths.The higher duty Wcc嘉泰姆

cycle will give a higher COMP voltage level, and it is easy to touch the trip point. The compensa-Wcc嘉泰姆
tion components also affect the response of COMP voltage; smaller caps may give a faster response.Wcc嘉泰姆
The output current has faster rising time during short;the COMP pin will have a sharp rise. However,Wcc嘉泰姆

 if the cur-rent rises too fast, it may cause a false trip. The output capacitance and its ESR can affectWcc嘉泰姆

 the rising time of the current during short.Wcc嘉泰姆

八,相关产品                 更多同类产品......Wcc嘉泰姆


Switching Regulator >   Buck ControllerWcc嘉泰姆

Part_No Wcc嘉泰姆

Package Wcc嘉泰姆

ArchiWcc嘉泰姆

tectuWcc嘉泰姆

PhaseWcc嘉泰姆

No.ofWcc嘉泰姆

PWMWcc嘉泰姆

OutputWcc嘉泰姆

Output Wcc嘉泰姆

CurrentWcc嘉泰姆

(A) Wcc嘉泰姆

InputWcc嘉泰姆

Voltage (V) Wcc嘉泰姆

ReferenceWcc嘉泰姆

VoltageWcc嘉泰姆

(V) Wcc嘉泰姆

Bias Wcc嘉泰姆

VoltageWcc嘉泰姆

(V) Wcc嘉泰姆

QuiescentWcc嘉泰姆

CurrentWcc嘉泰姆

(uA) Wcc嘉泰姆

minWcc嘉泰姆

maxWcc嘉泰姆

CXSD6273Wcc嘉泰姆

SOP-14Wcc嘉泰姆

QSOP-16Wcc嘉泰姆

QFN4x4-16Wcc嘉泰姆

VM    Wcc嘉泰姆

1   Wcc嘉泰姆

1     Wcc嘉泰姆

30Wcc嘉泰姆

2.9    Wcc嘉泰姆

13.2Wcc嘉泰姆

0.9Wcc嘉泰姆

12     Wcc嘉泰姆

8000Wcc嘉泰姆

CXSD6274Wcc嘉泰姆

SOP-8Wcc嘉泰姆

VM   Wcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

20Wcc嘉泰姆

2.9  Wcc嘉泰姆

13.2 Wcc嘉泰姆

0.8Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6274CWcc嘉泰姆

SOP-8Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

20Wcc嘉泰姆

2.9Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6275Wcc嘉泰姆

QFN4x4-24Wcc嘉泰姆

VMWcc嘉泰姆

2Wcc嘉泰姆

1Wcc嘉泰姆

60Wcc嘉泰姆

3.1Wcc嘉泰姆

13.2Wcc嘉泰姆

0.6Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6276Wcc嘉泰姆

SOP-8Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

20Wcc嘉泰姆

2.2Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

5~12Wcc嘉泰姆

2100Wcc嘉泰姆

CXSD6276AWcc嘉泰姆

SOP-8Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

20Wcc嘉泰姆

2.2Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

5~12Wcc嘉泰姆

2100Wcc嘉泰姆

CXSD6277/A/BWcc嘉泰姆

SOP8|TSSOP8Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

5Wcc嘉泰姆

5Wcc嘉泰姆

13.2Wcc嘉泰姆

1.25|0.8Wcc嘉泰姆

5~12Wcc嘉泰姆

3000Wcc嘉泰姆

CXSD6278Wcc嘉泰姆

SOP-8Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

10Wcc嘉泰姆

3.3Wcc嘉泰姆

5.5Wcc嘉泰姆

0.8Wcc嘉泰姆

5Wcc嘉泰姆

2100Wcc嘉泰姆

CXSD6279BWcc嘉泰姆

SOP-14Wcc嘉泰姆

VM   Wcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

10Wcc嘉泰姆

5Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

12Wcc嘉泰姆

2000Wcc嘉泰姆

CXSD6280Wcc嘉泰姆

TSSOP-24Wcc嘉泰姆

|QFN5x5-32Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

2Wcc嘉泰姆

20Wcc嘉泰姆

5Wcc嘉泰姆

13.2Wcc嘉泰姆

0.6Wcc嘉泰姆

5~12Wcc嘉泰姆

4000Wcc嘉泰姆

CXSD6281NWcc嘉泰姆

SOP14Wcc嘉泰姆

QSOP16Wcc嘉泰姆

QFN-16Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

30Wcc嘉泰姆

2.9Wcc嘉泰姆

13.2Wcc嘉泰姆

0.9Wcc嘉泰姆

12Wcc嘉泰姆

4000Wcc嘉泰姆

CXSD6282Wcc嘉泰姆

SOP-14Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

30Wcc嘉泰姆

2.2Wcc嘉泰姆

13.2Wcc嘉泰姆

0.6Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6282AWcc嘉泰姆

SOP-14Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

30Wcc嘉泰姆

2.2Wcc嘉泰姆

13.2Wcc嘉泰姆

0.6Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6283Wcc嘉泰姆

SOP-14Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

25Wcc嘉泰姆

2.2Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6284/AWcc嘉泰姆

LQFP7x7 48Wcc嘉泰姆

TQFN7x7-48Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

6Wcc嘉泰姆

0.015Wcc嘉泰姆

1.4Wcc嘉泰姆

6.5Wcc嘉泰姆

-Wcc嘉泰姆

5Wcc嘉泰姆

1800Wcc嘉泰姆

CXSD6285Wcc嘉泰姆

TSSOP-24PWcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

2Wcc嘉泰姆

20Wcc嘉泰姆

2.97Wcc嘉泰姆

5.5Wcc嘉泰姆

0.8Wcc嘉泰姆

5~12Wcc嘉泰姆

5000Wcc嘉泰姆

CXSD6286Wcc嘉泰姆

SOP-14Wcc嘉泰姆

VMWcc嘉泰姆

1Wcc嘉泰姆

1Wcc嘉泰姆

10Wcc嘉泰姆

5Wcc嘉泰姆

13.2Wcc嘉泰姆

0.8Wcc嘉泰姆

12Wcc嘉泰姆

3000Wcc嘉泰姆

CXSD6287Wcc嘉泰姆

SOP-8-P|DIP-8Wcc嘉泰姆

发表评论
共有条评论
用户名: 密码:
验证码: 匿名发表


最新信息
(1.)CXDC6584HV 100V集成M   ...
(2.)CXSD1018AH 100V低内   ...
(3.)CXDC6574HV 120V降压   ...
(4.)CXPR7166 单节锂离子/   ...
(5.)CXMD32126 双通道H桥   ...
(6.)CXMD32108R/S:高性能无   ...
(7.)CXLE86143 高功率因数   ...
(8.)CXLE8278 高效升压型L   ...
(9.)CXSU63180 10A非同步   ...
(10.)CXLB73269太阳能供电   ...
热门信息
♦   NI将Wi-Fi 6 PA/FEM组   ...
♦   CXSD61053 wide input   ...
♦   第二届集成电路产业技   ...
♦   2015年科研计划项目“   ...
♦    CXDR7544单节锂电池   ...
♦   带标志的电流限制器CX   ...
♦   5G承载致光模块价格“   ...
♦   SOT23-3封装详解与设   ...
♦   带标志的电源开关CXCL   ...
♦   带标志的电源开关CXCL   ...
推荐信息
  • 低静态电流超温保护2   ...
  • LCD+ mini LED背光 开   ...
  • 5G承载致光模块价格“   ...
  • 报告称鸿蒙2020年全球   ...
  • 英飞凌推出面向LED驱   ...
  • 头条信息
  • 低静态电流超温保护2   ...